
AFRL-VA-WP-TM-2005-3083
TEMPORALLY AWARE REACTIVE
SYSTEMS

Dr. Mark P. Jones
Oregon Graduate Institute (OHSU)
School of Science and Engineering
20000 NW Walker Road
Beaverton, OR 97006-8921

MARCH 2005

Final Report for 01 July 2000 – 01 March 2004

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

AIR VEHICLES DIRECTORATE
AIR FORCE MATERIEL COMMAND
AIR FORCE RESEARCH LABORATORY
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

NOTICE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission
to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site
Public Affairs Office (AFRL/WS) and is releasable to the National Technical Information Service
(NTIS). It will be available to the general public, including foreign nationals.

PAO Case Number: AFRL/WS 05-1124, 09 May 2005.

THIS TECHNICAL REPORT IS APPROVED FOR PUBLICATION.

/s/ /s/
__ ___
Raymond A. Bortner Michael P. Camden, Chief
Senior Electronic Engineer Control Systems Development and

 Applications Branch

/s/
__
BRIAN W. VAN VLIET
Chief, Control Sciences Division
Air Vehicles Directorate

This report is published in the interest of scientific and technical information exchange and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

March 2005 Final 07/01/2000– 03/01/2004
5a. CONTRACT NUMBER

F33615-00-C-3042
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

TEMPORALLY AWARE REACTIVE SYSTEMS

5c. PROGRAM ELEMENT NUMBER
69199F

5d. PROJECT NUMBER

A04I
5e. TASK NUMBER

6. AUTHOR(S)

Dr. Mark P. Jones

5f. WORK UNIT NUMBER

 0C
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

Oregon Graduate Institute (OHSU)
School of Science and Engineering
20000 NW Walker Road
Beaverton, OR 97006-8921

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRL/VACC Air Vehicles Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7542

Defense Advanced Research Projects
Agency (DARPA/IXO)
3701 N. Fairfax Drive
Arlington, VA 22203-1714

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

 AFRL-VA-WP-TM-2005-3083
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

Report contains color.
14. ABSTRACT

Real-time embedded software development is recognized as a significant cost and schedule driver for many of today's
advanced–and highly software-centric–military systems. This project targets these issues directly by developing
techniques to enable rapid construction and greater reuse in embedded systems while also delivering reliability and
performance improvements. In particular, these benefits are a result of (a) the ability to analyze the behavior and
correctness of real-time software; (b) the ability to construct individual software components or to develop large
configurations of multiple components more rapidly by leveraging high-level, domain-specific abstractions (a productivity
benefit); (c) the ability to enforce predictable and graceful degradation behavior during overload (a reliability benefit); and
(d) the ability to operate closer to resource saturation (a performance benefit due to support for graceful degradation).

15. SUBJECT TERMS
Real-time software; Static Scheduling; Domain-specific languages; Static Checking; Overload tolerance; Graceful
degradation

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

 246
 Raymond A. Bortner
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-8292

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

iii

Table of Contents
 5

1 Overview and Approach 1

2 Project Chronology 5

2.1 Project Year 1 (July 2000-June 2001) 7 13

2.1.1 Investigation of Relevant Applications and Domains 8

2.1.2 Theoretical Foundations 8

2.1.3 Practical Implementation 9

2.1.4 Static Analysis using Type Systems 16

2.2 Project Year 2 (July 2001-June 2002) 17

2.2.1 Language Definition 18

2.2.2 Language Implementation 19

2.2.3 Static Analysis using Type Systems 20

2.2.4 OEP Integration 20

2.3 Project Year 3 (July 2002-June 2003) 22

2.3.1 A Domain Specific Language for Component Configuration 22

2.3.2 Adaptivity, Overload Tolerance, and Graceful Degradation 26

2.4 Project Year 4 (July 2003-December 2003) 27

3 Publications and Technical Paper Overview 33

4 Conclusions 43

Appendices A - M

RoushRV
Text Box

RoushRV
Text Box
 14677891011121313161620212535

1 Overview and Approach
The original goals of the “Temporally Aware Reactive Programs” project (referred to informally

as “Project Timber”) were to develop new programming language technology and analysis tools to

support a compositional approach to programming of large-scale, real-time, embedded systems

with high assurance of non-functional aspects of behavior. Our work was performed in the context

of the DARPA PCES program (“Program Composition for Embedded Systems”)

The project focused, in particular, on the central role of time in embedded systems design. This

includes aspects of behavior that require hard, real-time guarantees as well as those that are driven

by softer, quality of service (QoS) requirements with policies for overload tolerance to support

adaptivity and graceful degradation in resource constrained, real-rate systems. Our approach

centered on the development of a high-level, reactive programming language for component

implementation and system integration in which temporal behavior is declared explicitly. We

designed this language, called Timber (Time as a basis for embedded real-time systems), to allow

programmers to separate and describe different aspects of system behavior at a high-level, relying

on analysis and compiler technology to weave these specifications together to build working

systems. The diagram above illustrates this concept, suggesting how aspects of core functionality

(described by program code), timing (captured by temporal constraints), QoS (specified in terms of

utility functions and statistical distributions), and platform specifics might be combined to support

rapid construction of real-time, embedded systems with guaranteed temporal behavior.

Timing

U

T

Core functionality

QoS adaptivity

Platform

Real-time Embedded Systems using Timber

Rapid construction and reuse via aspect weaving

1

Conventional middleware provides high-level, portable services and mechanisms that can be used

across a range of applications. In a similar way, Timber provides a kind of "language middleware"

that leverages the advantages of domain-specific languages in providing safe, expressive, and

efficient encapsulation of time-oriented and QoS programming patterns. For example, Timber

programs are written in terms of events and reactions—to which appropriate timing constraints can

be assigned—and benefit from an implicit treatment of threading with no blocking operations,

which avoids the problems of priority inversion. But Timber is also very expressive; for example,

communication with callbacks is facilitated by the use of first-class reactions and a monadic type

system. In the design of Timber, scheduling and concurrency play key roles in weaving together

aspects of functional and extra-functional behavior. For hard real-time reactions we developed

techniques for calculating static schedules from explicit temporal constraints, and for applying

these to obtain firm static guarantees of timeliness for both periodic and aperiodic events. For soft

real-time reactions we developed techniques for applying dynamic and adaptive scheduling, driven

by utility functions to provide optimal scheduling with guarantees of statistical QoS properties.

In the early stages of the project, we developed a mathematically rigorous model of computation

for timed reactive systems to serve as a basis for the design of the Timber language and as a

foundation for static scheduling of time sensitive reactions. At the same time, as a driver for

investigation of techniques for adaptation and graceful degradation, we worked on the development

of a general priority-progress streaming (PPS) model and its application to a video-streaming

pipeline that used software feedback to adapt and respond in real-time to changing network

bandwidth and varying CPU overhead in accordance with dynamically specified user QoS

preferences.

The introduction of two Open Experimental Platforms in the PCES program provided opportunities

to focus our research efforts and to demonstrate their applicability in a context that was common to

all of the projects in the program. In particular, we worked to integrate our video pipeline software

in the context of the BBN UAV OEP, adding support for live video streaming and demonstrating

its potential for flexible and adaptive flow control in assuring end-to-end QoS in UAV video

reconnaissance. We also demonstrated that we could use Timbot, an autonomous robot vehicle

2

equipped with a video camera, as an additional UAV simulation host that could reliably execute

demanding, time-critical control software (written in Timber) on the same platform as the rate-

critical components of the live video streaming software.

As the program continued to mature, we began to develop generalizations of the PPS approach to

adaptive streaming that was used in our video pipeline (i) to support additional dimensions of

adaptation (such as region of interest, color space, speed and precision of robot navigation, power

consumption, etc…); (ii) to accommodate different kinds of data (e.g., audio, still images,

streaming GIS/terrain data, etc…); and (iii) to offer increasing levels of scalability. At the same

time, we applied Timber to the construction of a new domain-specific language (DSL) for

component configuration in the context of the Boeing OEP. Although this did not require the

facilities of Timber for specifying time-critical behavior, our work with the resulting DSL showed

significant benefits from the use of a domain-specific language, including (i) a significant reduction

in code side (DSL programs are typically between a tenth to a thirtieth of the size of their original

descriptions in the Boeing OEP), enabling better scalability and increased productivity; (ii) support

for modularity and reusability, facilitating the description and construction of large configurations

by the members of a team; (iii) substantial improvements in reliability resulting from the ability to

detect and eliminate many errors through automatic static checking and analysis; and (iv) increased

flexibility, allowing configuration data to be more easily exported to other tools for visualization,

debugging, and other purposes. One of the last pieces of work before the project ended was to

show how the functionality of the DSL could be packaged in a standalone library, providing a

mechanism for dynamic reconfiguration, which is a significant new capability with applications to

increasing mission agility, enhancing fault tolerance, facilitating sophisticated load balancing, and

enabling fine-grained customization.

3

2 Project Chronology
Real-time embedded software development is recognized as a significant cost and schedule driver

for many current, advanced, and highly software-centric military systems. Although some

promising programming technologies have been developed—including real-time open systems and

middleware, aspect-oriented programming, and patterns—their potential has not yet been realized

due to limited technology support and developing code for such applications is still a time-intensive

and highly error prone process.

The DARPA PCES program (Program Composition for Embedded Systems) was developed to

address these problems, seeking ground-breaking technologies for new forms of program

composition to facilitate rapid and reliable construction of large-scale, flexible software systems.

Several high-level goals were identified, including (i) the development of techniques for

implementing and assuring key properties/aspects of real-time embedded systems such as

concurrency, synchronization, timing, and fault tolerance; and (ii) the development of “aspect

weaving” tools and technologies that would allow the construction of sophisticated, embedded

systems software by combining code from reusable “aspect libraries” with the code that

implements only the desired algorithmic functionality of a specific target system. The original

focus of the PCES program was on program analysis and (property-preserving) composition

techniques that could be used cooperatively to support real-time programming. This emphasis was

reflected in the identification of four technical topic areas: aspect suites for embedded systems;

program representation and analysis; program transformation systems; and stage management

systems.

Within the PCES program, OGI was awarded a contract to develop tools and techniques to support

a comprehensive, new approach to building and analyzing software for embedded systems, with a

particularly strong emphasis on temporal behavior and constraints. This approach was based upon

a model of computation called Timed Reactive Systems (TRS) in which behavior is specified as a

collection of time-sensitive reactions to events that occur in the operational environment. When

software is specified in this model, dynamic reactions can be statically scheduled, based upon an

automated analysis of the program, to implement real-time reactions that satisfy the declared timing

4

constraints. The calculation of a schedule is a form of aspect weaving that automatically

interleaves different aspects of system behavior together in a working system. Moreover,

successful computation of a schedule provides assurance that hard timing constraints on system

behavior can (and will) be met. At the same time, failure to compute a schedule provides critical,

design-time feedback to system developers by identifying infeasible designs, and, in many cases,

highlighting specific issues of a software and/or hardware architecture that must be addressed in

order to obtain the required behavioral guarantees.

This approach is particularly well-suited to real-time, embedded systems development, and it is

also rather different to traditional approaches that have tended to assume that all time-critical

processes are periodic, or else that they can be described in terms of prioritized events rather than

more direct temporal constraints. In addition to developing the foundations of TRS, our work also

called for the design and implementation of a programming language called Timber (TIMe as a

Basis for Embedded Real-time systems) to support programming in this model. A new language

design was needed because there were no available languages with the necessary features to

support a compositional approach to programming real-time embedded systems in line with the

TRS model. From the beginning, however, we intended to leverage key features of existing

languages that we considered to be necessary and appropriate for high-assurance and embedded

software development, including: a powerful, functional language core; an object-oriented,

imperative framework of reactive computations; and a strong, monadic type system with the ability

to track and delimit the scope of computational effects automatically within component types.

These same facilities allow us to treat Timber as a domain-specific language for high-assurance,

adaptive, and portable real-time embedded systems, supporting encapsulation of time-oriented and

quality of service programming patterns with static analysis to support behavioral guarantees. The

Timber language played a central role in our work and this was reflected by the fact that we often

refer to the overall project as “Project Timber” instead of using the formal title of “Temporally

Aware Reactive Programs.”

To gain empirical feedback on the technology and concepts that we developed, our work included

plans to use them in the construction of embedded systems for two different application domains:

active network routers and real-time robot control. A key concern in the active networking

5

community is the question of how to support extension and customization of packet filters without

compromising on security or throughput. Examples of customization include application-specific

rate shaping policies, routing, data synchronization, and logging. For real-time robot control, we

planned to focus on the task of controlling a mobile robot that would carry various sensors,

including a video camera, and on streaming back live video over a wireless network. Because of

resource limitations on such platforms (resulting, for example, from the sharing of a single CPU for

hard real-time control as well as softer real-time streaming), and also because of changes in

wireless network bandwidth resulting from shadowing or path loss as the robot moves, it is

essential that such systems support adaptive QoS and resource management. This provides for

graceful degradation of service, instead of system failure, in accordance with user-specified, and,

potentially, varying quality preferences or requirements. In this area, we planned to build on work

that had previously been conducted in the Quasar project at OGI as part of the Quorum program,

which had developed techniques for software feedback and end-to-end QoS support. This also

included the development of prototypes of multimedia pipelines that scale data flows in response to

resource paucity or profusion while respecting end-user specified utility metrics, and to low-level

feedback controllers that allocate resources such as CPU cycles or network bandwidth by

monitoring application level progress.

The specific focus of the research activity, determining which ideas were to be pursued vigorously

and which were not, was in flux throughout the duration of the project by agreement of the

Government and OGI scientists so as to provide DARPA with the flexibility to achieve maximum

benefit from the project towards its overall program objectives

A brief chronology of the project is provided in the following sections.

2.1 Project Year 1 (July 2000-June 2001)

The OGI contract for Project Timber began on July 20, 2000, and the OGI team explored worked in

several different areas during this time, as described in the following subsections.

6

2.1.1 Investigation of Relevant Applications and Domains

One of the first requirements of the project was to identify, and more fully understand, and explore

relevant applications and domains that would play a critical role in motivating, informing, and

guiding the design of the Timber language. In particular, we focused on (i) the use of Infopipe and

Quasar abstractions in the construction of real-rate adaptive video streaming; and (ii) the

construction of embedded network routers, both on custom hardware developed by Intel, and on

stock hardware based on the Click modular router that was developed at MIT. Towards the end of

the first year, using the prototype interpreter that we had developed by that time, we were able to

model the basic SEC flight control components in Timber. Examples like these continued to play

an important part throughout the project.

We also began investigations in the area of dynamic adaptation and graceful degradation, working

towards the long term goal of capturing these ideas in the form of a reusable “aspect library” or

corresponding design patterns. We focused, in particular, on practical mechanisms for dynamic

load estimation and overload tolerance including: time stamping and prioritization of data in packet

streams; feedback control and dynamic scheduling; buffer level monitoring; and the role of utility

functions in mapping between objective and subjective notions of quality. These techniques drew

from, and (fed back) into ongoing development of the Quasar adaptive video pipeline software, and

provided insights into key aspects of the design space for Timber in these domains.

2.1.2 Theoretical Foundations

To provide firm theoretical foundations for Timber, we developed the formal computational model

of Timed Reactive Systems (TRS). This work was driven by the goal of using static analysis to

enable strong and meaningful guarantees about the ability of a system to satisfy explicit timing

constraints. We focused on reactive languages such as Esterel, Lustre and O’Haskell as significant

influences for the design of Timber, and on the kinds of extension that would be needed to support

the declaration of temporal constraints. In addition to formal modeling, the OGI team developed a

prototype implementation of a static analysis and scheduling algorithm that takes, as input, the

description of a reactive program, focusing on essential timing properties such as reaction times,

inter-event latencies, and response times. The output provides a static schedule for the reactive

7

program, which describes how the program can be implemented without the overhead or

uncertainty of dynamic scheduling. Most importantly, the existence of a static schedule tells us that

the program can be implemented in such a way as to guarantee that its timing properties will be

met. As such, the algorithm can be used, not only for program compilation, but also as a design-

level tool to assess the feasibility of a given reactive program: the algorithm will not produce a

static schedule if conformance to timing requirements cannot be guaranteed. In addition, by

separating the description of timing behavior from other aspects of a reactive program’s

functionality, we enhance portability and reuse. For example, we can vary the specification of

reaction times in different runs of the static scheduler to evaluate the feasibility of executing a

program on different platforms, and to generate a different static schedule for each one.

2.1.3 Practical Implementation

Based on our investigations of relevant domains, theoretical foundations, and existing

programming languages, we selected O’Haskell as a starting point for the design of Timber. We

concluded that O’Haskell was the most appropriate choice because it already provided most of the

features that we had identified as necessary components for our work, including: a high-level

model of reactive programming and event-oriented communication; support for stateful concurrent

objects; high-level programming abstractions, inherited from the functional programming language

Haskell; and advanced but flexible type system features that guarantee safe execution of programs

while also providing a basis for program analysis. The requirements for Timber, however, also

necessitated several significant changes to O’Haskell. For example, to obtain predictable timing

behavior, we concluded that an eager evaluation strategy would be needed in place of the non-

strict, or lazy, evaluation strategy that is used in Haskell and O’Haskell. Most significantly, of

course, the design of Timber also called for new mechanisms, not provided in O’Haskell, to allow

aspects of programming behavior, particularly those related to time, to be expressed explicitly

using language constructs rather than indirectly using API calls, or captured only implicitly in the

way that a program is written. To maximize our ability to use O’Haskell, we recruited its original

designer and implementor, Dr. Johan Nordlander, as a postdoctoral researcher. We also used his

O’Hugs implementation of O’Haskell (which had, in turn, been built from the Hugs interpreter for

8

Haskell that had been developed by Dr. Mark Jones, the Project Timber PI) as the starting point for

building a prototype Timber interpreter called Ti.

The Timber interpreter, Ti, allowed some forms of timing behavior to be captured by annotating

the component reactions of a reactive program with execution deadlines. These annotations were

used to control a modified dynamic scheduler embedded in the interpreter’s runtime system, using

an earliest deadline first (EDF) policy to ensure that timing constraints are met whenever possible.

We coded several examples using these annotations to demonstrate their utility, and also to

understand their limitations, for example, in expressing drift-free, periodic tasks. This work

suggested further refinements and improvements to our original language design. For example, in

collaboration with OGI scientists involved in the SEC (Software Enabled Control) program, we

investigated and implemented an alternative notion of timing annotations that used a common

baseline for propagated methods calls; we implemented tagging of events (messages) in Ti as an

attempt to achieve better to control over yet undelivered messages (e.g., timeouts); and we worked

on the problem of garbage collecting processes that can still be reached but whose output cannot be

observed. These experiments provided further useful feedback to shape the design of Timber while

also supporting efforts to determine how to the results of our work on static scheduling analysis

could be incorporated into the dynamic EDF scheduler of our prototype.

Towards the end of the first year, we began working towards the development of a prototype

compiler for the Timber language. At that time there was significant interest within the PCES

program in the evolving (but, at that point, unimplemented) Real-Time Specification for Java

(RTSJ). As a result, we focused on the potential for translating Timber into Java, especially with

its particular mechanisms for supporting concurrent objects and asynchronous communication. We

also investigated techniques for compiling the high-level constructs and timing annotations of

Timber to make use of the facilities of the real-time Java APIs.

2.1.4 Static Analysis using Type Systems

As a complement to the use of static analysis for the purposes of computing static schedules,

Timber was also conceived as a language with a rich static type structure that would allow flexible

9

definition, encapsulation, and application of user-defined datatypes and operations on those types.

During the initial stages of development, we worked on the design and construction of modular

type systems and type checkers. We expected to exploit this work in developing an expressive type

system for Timber, and in deriving supporting type inference and analysis tools. We also started to

investigate the role that subtyping can play in documenting and enforcing timing constraints

between the components of a real-time, embedded software system. This included developing

techniques that used subtyping and monadic types to capture communication protocols between

components in infopipes and in information flow networks, such as the Click modular router.

2.2 Project Year 2 (July 2001-June 2002)

One of the problems that arose in a number of different projects within the PCES program during

the first year was the lack of standard, program-wide examples that could provide: a platform for

experimental testing; a basis for comparison and integration between projects; and a direct

connection to potential adopters in relevant DoD domains. These issues were addressed by the

program manager in the second year of the program with the introduction of two OEPs (Open

Experimental Platforms):

• The BBN UAV OEP modeled aspects of a system that could receive video and image data

from one or more remote (simulated) UAV sources and distribute it to one or more viewing

stations, ATR units, etc. The BBN UAV OEP included an adaptive video streaming system

executing on a CORBA-based infrastructure for quality of service adaptation, and was

constructed using primarily C++ code in combination with custom contract and aspect

description languages.

• The Boeing Avionics OEP, based on the Boeing Bold Stroke Architecture, focused on the

challenges of configuring and analyzing large-scale component-based software for use in

distributed real-time embedded systems. The Boeing OEP included a CORBA-based

infrastructure for event-based computation and was implemented using a combination of

technologies including C++, UML, and XML.

Both of these OEPs were based on CORBA technology using the TAO real-time object broker and

the Adaptive Communication Environment (ACE).

10

The introduction of the OEPs provided a focus for all of the researchers in the PCES program, and

also signaled a change in emphasis towards integration, empirical evaluation, and technology

transfer of existing technologies and away from the development of new technologies. These

changes had significant impact on our technical focus in the second (and subsequent) years of the

project, and led to us focusing our efforts in two areas. The first of these was in preparing our core

technologies so that they could be used effectively as a basis for experimentation and as a guide to

further development. The second was in evaluating and exploring the two OEPs to ensure a

common context for us within the program and to identify opportunities where our specific

technologies could be integrated or leveraged in collaborative efforts. We describe this work in

more detail in the following subsections.

2.2.1 Language Definition

With the basic foundations and design in place, we worked to produce a draft language definition

for Timber that was targeted to potential collaborators within the PCES program and, more

broadly, was intended to serve as an introduction to and motivation for the key features of the

language.

We also worked to establish a formal semantics for Timber to be used as a means of describing the

language to others, to provide a foundation for our scheduling and analysis techniques, and to serve

as a standard against which the correctness of our implementations could be assessed. These

efforts resulted in a high-level semantics for real-time embedded systems based on a notion of

time-sensitive reactive processes in which the actions of concurrent objects are executed subject to

real-time constraints. Given accurate estimates of worst-case execution times (WCET), a system

with this semantics can either be assured to satisfy a declared set of time constraints in all execution

trajectories, or a possible counter-example to the constraint set can be shown. The semantics was

developed using a process-algebra formalism so as to capture concurrency aspects of the execution

framework, while abstracting away from low-level resource usage aspects (such as registers, data

memory, instruction store, and IO buffers) that are often manifested in an abstract machine

formalism.

11

2.2.2 Language Implementation

We continued to refine our Timber interpreter, Ti, and we used it to prototype several example

applications, including the contract language in the BBN UAV OEP, and a simplified model of the

Boeing OEP configuration language. The bulk of our efforts in this area, however, focused on the

development of a new compiler for Timber producing executables for real-time platforms. (As an

interpreter, Ti uses only a simulated notion of time, and cannot guarantee real-time performance.)

We had previously invested some effort in studying the RTSJ (Real-time Specification for Java) as

a potential target for a Timber compiler, using its real-time features to provide the functionality

needed for Timber executables. More specifically, we had hoped to use the open source reference

implementation of RTSJ that was being developed by TimeSys to run on top of their Linux/RT

operating system. Unfortunately, to avoid delay to our project, we were forced to abandon this

approach because there was still no workable implementation of RTSJ available to us at that time.

In particular, we had anticipated the need to add features to an RTSJ implementation, such as

additional schedulers that are not guaranteed by the basic specification, so access to an open source

version of RTSJ was crucial.

We therefore moved to a different implementation strategy, targeting the standard and widely

implemented POSIX threads API so that our generated code could be executed on genuine real-

time platforms—such as RT/Linux—as well as on platforms like standard Linux and MacOS X that

support the basic APIs without guarantees of real-time behavior. In view of the goals of our

project, we considered RT/Linux as the primary target of our compiler. Nevertheless, the ability to

run compiled Timber programs on standard desktop operating systems is also very convenient

during program development and functional testing.

The initial working prototype of our Timber compiler was completed in the second quarter of this

project year. The compiler was written in a subset of Timber that is also compatible with Haskell

so that we could use existing Haskell compilers for bootstrapping. The output of the compiler was

ANSI C, augmented with calls to POSIX APIs and a small-runtime library that provides support for

memory allocation, concurrency, event handling, and dynamic scheduling of reactions.

12

2.2.3 Static Analysis using Type Systems

Motivated again by program-wide interests in the RTSJ, we also began some work in the second

year of the project to explore the potential for applying the techniques of region analysis and

monadic type systems in the context of memory management for real-time Java. This resulted in a

calculus for modeling scoped memory in the style of the RTSJ (Real-time Specification for Java)

with a type-based analysis that allows all run-time checks on assignment (protecting against the

possibility of dangling pointer errors) to be omitted, relying instead on static, compile-time tests to

ensure safety. We intended to continue this work to evaluate its effectiveness in practice; to

develop a more direct understanding of its expressivity and of its relationship to the RTSJ standard;

and to add a prototype implementation of the analysis and its run-time support to one of our

implementations of Timber. We suspended work in this area when the researcher focused on this

task transferred to another institution, and decided not to resume this activity in light of the

problems with availability of RTSJ implementations and the resulting de-emphasis of RTSJ in the

PCES program.

2.2.4 OEP Integration

As a result of studying the BBN OEP, we discovered strong similarities between some aspects of

Timber and the Contract Description Language that was used in BBN’s QuO system, and we

pursued several opportunities to build on this. For example, we investigated how our techniques

for scheduling analysis could potentially be applied to analyze and guarantee feasibility of

contracts. In addition, we developed a Timber version of the contract used in the BBN OEP demo,

to demonstrate how Timber could be used to support more effective composition and reuse in

contract descriptions. For example, using Timber, the recurring idiom in which a contract

alternates between test and duty cycles to probe for resource availability can be abstracted out as a

higher-order function or “pattern” in a library of reusable code.

We also investigated a general model of priority-progress streaming (PPS) for use in real-rate

applications that provides practical mechanisms for dynamic load estimation and overload

tolerance using time stamping and prioritization of data in packet streams. Such an approach

allows for more flexible adaptation in applications such as video pipelines, where the annotations

13

on streamed data can be used to implement intelligent, selective packet dropping according to user-

specified quality requirements.

These efforts were focused by two plans for integration and experimentation in the context of the

BBN OEP demo. The first was to recode the original, strategy for controlling temporal resolution

of MPEG video via frame dropping in the BBN OEP in terms of the more general model of PPS.

The second was to modify the OEP to use a variant of the MPEG standard called SPEG that

hasdbeen developed at OGI to allow dynamic adaptation in additional quality dimensions such as

spatial and color resolution. The integration effort benefited significantly from a visit to the BBN

site by OGI personnel, and the goals of both plans were realized. Successful integration of the OGI

PPS software with the BBN pipeline was demonstrated at the PI meeting that was held in July

2002, and we were able to demonstrate several benefits, including fine-grained adaptation over 16

different levels for each different quality balance setting (compared with only three in the original

BBN pipeline), as well as the ability to tailor other parameters, such as smoothness and latency, to

meet user preferences or requirements.

Previous work on the Quasar video pipeline had assumed a stored media model in which video data

would be preprocessed and the results stored on disk for (potentially repeated) streaming at a later

time. This mode of operation is of little use in applications such as surveillance and remote

monitoring where video data must be captured, processed, and transmitted in real-time. To

overcome these limitations, we began the development of Qstream, a new version of the video

pipeline that could support real-time transcoding of live video to the SPEG format.

We had originally planned to use a small autonomous robot vehicle, “OGImaBOT,” as a

demonstration platform for our work and for integration with the BBN OEP. This experiment was

also chosen so that we could demonstrate the use of Timber in software for the robot that integrated

both time-critical control, and rate-critical video processing tasks. The OGImaBOT featured a

Pentium-based computer on the chassis of a RC truck, and was originally developed at OGI for use

in a different project. After some initial experiments, however, we determined that OGImaBOT

was not suitable for this work; aside from poor reliability and short battery life, the most serious

problems were that it did not have enough memory to run the ACE, TAO, and QuO middleware

14

and that its CPU was too slow for real-time processing of live video. We therefore decided to build

a new, low-cost robot vehicle, subsequently christened Timbot (the “Timber Robot”), using the

same basic construction strategy as OGImaBOT, but with 256MB RAM, a more powerful Pentium

III Processor running at 850MHz, a slot for a compact flash card/microdrive as backing store, and a

small video camera on a pan-tilt mounting at the front of the robot. Construction of Timbot was

completed by April 2002. By the time of the July 2002 PI meeting, we were able to use Timbot as

an integrated part of our demonstration using the BBN OEP. In particular, we showed that we

could successfully stream live data from the camera mounted on Timbot across a wireless network

using our flexible, adaptive video pipeline software while simultaneously running simple robot

control applications such as wall-following and obstacle avoidance, programmed in Timber, on the

same CPU.

2.3 Project Year 3 (July 2002-June 2003)

Our efforts in the third year of the project focused almost exclusively on work in the context of the

Boeing and BBN OEPs and on collaboration with researchers in other PCES projects. In the case

of the Boeing OEP, we explored a new role for Timber in a domain-specific language for

component configuration, and demonstrated significant benefits in terms of scalability, reuse,

modularity, and defect detection/elimination. In the case of the BBN OEP, we continued to refine

our work on adaptivity, overload tolerance, and graceful degradation, as well as working towards a

coordinated technology demonstration with other PCES projects. The latter anticipated using

Timbot and the OGI PPS software as a simulated UAV or UCAV, both in supplying video data to a

remote ATR system, and in responding to high-level path control signals that could be used for

target tracking. This work is described in more detail in the following sections.

2.3.1 A Domain Specific Language for Component Configuration

Prompted by discussions with members of the Boeing team at the PI meeting in April 2002, and by

a follow-up visit by OGI personnel to the Boeing facility in St Louis, we began to explore a new

application for Timber as the host of a new domain-specific language (DSL) for component

configuration in the Boeing OEP. Although this particular application did not call for any of the

15

real-time or reactive features of the Timber language, we were able to leverage other features,

particularly its support for powerful abstractions. In our initial experiments, we demonstrated that

the resulting DSL would allow a significant reduction (by a factor of more than 30 in some of the

larger cases) in the size of the descriptions for component configurations (and hence a significant

improvement in scalability and productivity) in comparison to the XML-based approach that was

used in the original Boeing OEP. We demonstrated that the DSL could support modular

construction of large configurations, as would be required when the description of a large system is

produced by a team of engineers instead of a single individual, and that it facilitated more effective

reuse of previously built component subsystems. Moreover, in the process of generating new DSL

versions of the configuration descriptions, we uncovered a number of previously undetected defects

in the Boeing software ranging from minor typos and redundant code sections to broken invariants

and typing errors. Because of the design that was used for the DSL, none of these errors could

have occurred if the original descriptions had been constructed using the DSL. We also identified

several inconsistencies between the informal prose specifications of some product scenarios and

their representation in the XML format of the Boeing OEP. For example, in one instance, a

component that was supposed to receive a 40Hz trigger signal had instead been configured with a

20Hz trigger. This problem was a little hard to spot in the original description because of a

semantic gap between the specification and the implementation—one expressed this requirement in

terms of frequency (in Hertz) while the other expressed it in terms of the reciprocal time interval (in

microseconds). Although such mistakes could also have occurred using the DSL, it is reasonable to

believe that they would be less likely because the DSL allows configurations to be expressed at a

high-level, without requiring error prone, hand translation in cases like this.

These results provided strong indications of the benefits that domain-specific languages can

provide in enhancing programmer productivity and software reliability. In addition, we found that

the DSL enables significant new capabilities that are not easily supported by the original OEP. A

small (but still useful) example of this was in providing a connection from DSL code to the dot

format that is used by the AT&T GraphViz software, which allowed for visualization of component

configurations in several different graphical formats.

16

In our initial experiments, we had reverse engineered the descriptions of several product scenarios

in Build 1.6 of the Boeing OEP by hand to produce corresponding descriptions of those same

scenarios in DSL code. These techniques were then quickly adapted to Build 2.0 of the Boeing

OEP that was released at the beginning of the third project year. As we gained more experience in

this, it became clear that the process could be automated, and we built an automatic XML to DSL

reverse engineering tool to perform this task. This tool also incorporated static analysis and error

checking functionality, which meant that it was immediately useful as a debugging aid to other

developers working with the Boeing OEP, even if they were not interested in using the DSL code

that the tool produced. The following table reflects the status of this work at the time of the PI

meeting in December 2002, which was about half way through the third project year:

Scenario #comps XML (2.0) XML (2.2) DSL Hand DSL RE Factor

1.1 3 195 134 11 14 9.6

1.2 6 345 246 20 21 11.7

1.3 8 572 419 19 28 15.0

1.4 50 3,285 2,687 119 94 28.6

1.5 12 730 454 38 37 12.3

1.6 4 290 195 10 16 12.2

1.7 5 368 252 12 19 13.3

1.8 3 270 149 8 17 8.8

1.9 81 - 3,649 - 167 21.9

1.10 15 - 569 - 47 12.1

2.1 397 28,944 23,890 <660 819 29.2

3.1 4 240 145 - 19 7.6

3.2 7 392 279 - 27 10.3

3.3 17 1,005 627 - 47 13.3

3.4 91 - 4,566 - 196 23.3

This table summarizes details for the fifteen product scenarios that were included in Build 2.2,

indicating the number of distinct components (“#comps”) in each product scenario as well as the

number of lines of XML code in the descriptions of these scenarios in Builds 2.0 and 2.2 of the

OEP. (There are three gaps in the “XML (2.0)” column corresponding to three new product

17

scenarios that were only introduced in OEP Build 2.2.) The DSL columns show the number of

lines of code in each of the corresponding DSL descriptions of these product scenarios. The “DSL

Hand” column describes the DSL code examples that were produced by hand, while the “DSL RE”

describes the DSL code examples that were generated automatically, and for all of the scenarios, by

the reverse engineering tool. The “Factor” column indicates the ratio between the size of the XML

description in Build 2.2 and the size of the corresponding, machine generated DSL code. A

comparison between the “XML (2.0)” and “XML (2.2)” columns reflects a change that was made

in the XML format used by the OEP to a more compact version that reduced size by 20-40%.

Nevertheless, it is clear that the DSL still resulted in descriptions that are about an order of

magnitude smaller, and that the benefits are greatest in the largest scenarios, which is notable

because these scenarios are also the ones that are most representative of real systems.

Although we had provided detailed feedback to the OEP developers on the defects that we had

found in previous releases of the OEP builds, we were still able to find a significant number of bugs

in Build 2.2, most of which had occurred either as a result of the change in XML format or in the

construction of the new product scenarios. These problems included deviations from the DTD (18

examples), a receptacle with an incorrect component type (1 example found), unused event

suppliers (at least 25 examples found), and configurations of event suppliers and consumers using

different port implementations (at least 72 examples found). Some of the problems that we found

were of little practical consequence in the OEP as a whole (although they could have caused

problems with interoperability or with a more rigorous implementation of the OEP framework), but

others had the potential for unnecessary use of computational resources in support of redundant

components or possible runtime failures in configured systems.

To assist other PCES researchers who were working on the Boeing OEP, we began to distribute our

DSL implementation and tools on the web. One example of a collaboration that was assisted in

part by this was a prototyped integration of our DSL with the Stanford Event Coordination

Language (ECL).

18

2.3.2 Adaptivity, Overload Tolerance, and Graceful Degradation

Our earlier work had demonstrated the ability of the Qstream video pipeline and the PPS protocol

to support dynamic adaptation over two quality dimensions (temporal and spatial) with sixteen

different levels of adaptation for any given user preference/quality setting. In the third year of the

project, we focused our efforts in this area on (i) exploring techniques for adaptation over more

than two quality dimensions; (ii) generalizing the mechanisms of PPS and developing the

underlying ideas as a pattern that could be applied in a wider range of applications; and (iii)

packaging and documenting this work so that it could be more easily shared and transitioned into

real world use.

We had already identified several different possibilities for exploring adaptation over new quality

dimensions in both the robot control and video pipeline domains, but we decided that the latter

would be more immediately appropriate for us given its relevance to the BBN OEP. We

determined that it would be possible to accommodate both color space and region-of-interest (ROI)

adaptation within our Qstream prototype. The former refers to the ability to vary the amount of

color information that is transmitted with a video signal and was made feasible by the fact that the

underlying SPEG format used in Qstream already separated color information into distinct

components. The latter, ROI adaptation, refers to the ability to prioritize specified regions of a

video signal more highly than others. This was also made feasible by our use of SPEG, which,

being based on the MPEG1 standards, would allow us to represent regions in the video signal as

collections of MPEG “macroblock” elements. We decided to focus on ROI adaptation first because

we felt that it would provide a more demanding test of our methods, and that it would lead to a

more interesting new capability.

The original system was written to support only two fixed dimensions of adaptation, so we began

our work by building a new and more flexible mapper implementation for Qstream. (The mapper

is the component of the PPS approach that implements QoS driven prioritization of the components

in a scalable data format such as SPEG.)

During this year, we also began to investigate the role of utility functions—already used to map

between objective and subjective notions of quality in Qstream—as a flexible way to specify QoS

19

policies for aspects of robot control such as power consumption, deviation from specified path,

ability to detect obstacles, and speed. These were our first steps in generalizing PPS to a unified

and flexible treatment of QoS adaptivity in both video and control aspects. Building on this, and

also leveraging the new, more general mapper implementation, we extended the video pipeline to

support simultaneous streaming of audio data. This work was helpful, not just in demonstrating the

application of PPS to a new data formats, but also because it raised new challenges in its own right,

including, most critically, the need for synchronization between multiple streams of data—audio

and video signals in this particular case.

We pursued several other items of work in this area during the third project year including: the

extension of the PPS protocol to support multicast, with a prototype implementation in Qstream;

experiments to apply PPS to support streaming of still images, anticipating a potential role in

demonstrations based on WSOA and on evolving plans for WSOA II; the development of a general

version of the PPS protocol using Timber, accompanied by an increasingly general understanding

of PPS as a design pattern for adaptive streaming; and the investigation of a role for Timber as a

DSL for specifying sophisticated and flexible adaptation policies, in the style of the BBN CDL, for

adaptation in multiple quality dimensions. We also produced our first public release of the

Qstream software this year, which we made available on the web to other researchers both within

and beyond the PCES program.

2.4 Project Year 4 (July 2003-December 2003)

In our final six months of technical work, we focused on three themes: Language middleware,

exploring the applications of DSL technologies in real-time embedded systems design and

implementation; Dynamic adaptation, developing reusable patterns for building flexible, QoS-

sensitive applications; and Integration and transition, packaging our work to facilitate easier

installation, use and integration/interoperability with other technologies, as well as demonstrating

and documenting their benefits and applicability (and costs) for potential adopters.

The Boeing OEP continued to evolve, undergoing some major changes in infrastructure and file

formats in the transition from Build 2.4 to Build 3.0, as well as adding new product scenarios. We

20

worked to ensure that our DSL implementation tracked successive releases of the Boeing software,

and we continued to demonstrate similar benefits to those described previously,. The following

table summarizes our status in this work in December 2003.

Scenario #comps XML LOC (3.0) DSL LOC Factor

1.1 3 130 13 10.0

1.2 6 247 20 12.3

1.3 8 411 27 15.2

1.4 50 2,671 93 28.7

1.5 13 479 38 12.6

1.6 4 184 15 12.3

1.7 5 241 18 13.4

1.8 3 141 16 8.8

1.9 81 3993 166 24.1

1.10 15 562 46 12.2

1.11 9 426 27 15.8

1.12 9 387 27 14.3

2.1 397 23,263 754 35.0

3.1 4 147 20 7.3

3.2 7 258 26 9.9

3.3 17 600 49 12.2

3.4 91 4280 213 20.1

3.5 3 129 20 6.4

4.1 572 31,796 1038 30.6

As before, this table demonstrates full coverage of all of the product scenarios in Build 3.0 with

very similar reductions in code size as we had obtained in previous versions. Once again, although

most of the bugs we had reported previously were fixed in either Build 2.4 or Build 3.0, we

continued to uncover new bugs, including both XML errors and scenario configuration errors. For

example, we discovered 80 components that were configured to generate events without

corresponding listeners, and 8 instances of misconfigured master/proxy pairs such as proxies

21

without corresponding masters. None of these errors could occur with configurations that were

generated using the DSL.

One of the changes introduced in Build 3.0 of the OEP was a requirement for new identifier tags in

the XML code for event supplier and consumer definitions. This highlighted another benefit of the

DSL approach because we were able to arrange for the DSL to XML translator to generate these

identifiers automatically, without requiring any changes in the DSL descriptions of product

scenarios. In the same way that high-level programming languages are used to produce code that is

(largely) independent of the underlying machine, we were also able to use the DSL to gain some

independence from details of the underlying, low-level XML format that was used in the OEP.

During this period, we began to investigate an enhancement to the reverse engineering tool that

could automatically discover recurring structure in the large, monolithic configurations described in

the OEP. Using a prototype, heuristic-driven tool, we were able to show that common patterns of

component structure emerge in many places. The goals of this work included refactoring out

complexity and identifying patterns for reuse so as to improve readability and usability of the DSL

code produced by the reverse engineering tool. We also expected that this work would: (i) enable

more efficient analysis of configurations; (ii) facilitate new forms of structural anomaly detection;

and (iii) provide support for automated distribution of configurations across multiple processors.

This last feature was considered to be particularly important because it could eliminate the

significant and error prone burden of manual partitioning and because it could potentially be used

to enable dynamic, automatic reconfiguration of a system in response to a processor failure.

We also worked to repackage DSL functionality as a standalone library, libdsl, that was designed to

be used as a subproject in the OEP distribution (or indeed, in any other application where this

might have been useful). In this way, we made it much easier for other researchers in the PCES

program to leverage our DSL technology without the need to install or learn about additional tools

(or even the DSL itself) before they could use DSL-based applications. Although this was

originally conceived as a way to simplify use of the DSL as a design-time/compile-time tool, it

soon became clear that this approach opened up new opportunities for use of libdsl as a run-time

service. For example, libdsl provides a mechanism that could support dynamic reconfiguration of

22

components at run-time, which would constitute a significant new operational capability with the

potential to increase mission agility, to enhance fault tolerance, to allow flexible load balancing,

and to support fine-grained customization according to operator/preferences. Even though we did

not attempt to optimize it in any way, the run-time footprint of our initial prototype implementation

of libdsl was approximately 300KB, plus any additional space required for DSL scripts, which is

smaller than we could expect to obtain using other approaches that incorporate a generic XML

parser.

Another development involving our DSL was the construction of DTD-driven XML to DSL code

generators supporting the ACL, ESCM, and AIF interface formats that were being used by other

projects within the PCES program for design and analysis tools. This increased our opportunity for

interoperability with other projects and with the tools that they were producing.

Work also continued on the theme of dynamic adaptation during the final six months of the project

with continued focus on PPS as a strategy for adaptive streaming and on the refinement of the

Qstream implementation. A new version of the Qstream software was released in November 2003

that included support for the multicast extension of PPS called PPM. We also worked to integrate

the Qstream software with the AVstreams framework that runs on TAO. This was intended as a

key step towards tighter integration of PPS into the BBN software so that it could be used in each

stage of the OEP, not just from the UAV to the Distributor, and not just for video. The first proof-

of-concept implementation of this functionality was completed in December 2003.

Technical work was stopped at the request of the sponsor at the end of December 2003. This early

stop had not been anticipated, but we did our best to tidy up as many of the loose ends as we could.

Inevitably, however, some technical lines of work that had been initiated at an earlier stage could

not be completed within the scope of the project. Work on the Timber language and its compiler

has been continued subsequently in a different context by former OGI personnel, but at a much

slower rate of progress. There has not been a formal public release of the Timber compiler, but

interim versions are available from publicly accessible cvs repositories. Work on Qstream has also

continued under the lead of Dr. Buck Krasic who completed his thesis work in February 2004, part

of which was supported by Project Timber. Krasic’s dissertation documents the design of PPS as

23

well as the original implementation and experiments involving Qstream. Current versions of the

Qstream software are available on the web from http://qstream.org and the emphasis has

now switched to developing a software infrastructure for media streaming over the Internet. Work

on ROI adaptation for Qstream had been suspended when the primary OGI researcher working on

this topic took an extended maternity leave. She was about to resume work in this area when the

project was stopped. Despite the promising results, we have not been able to continue work on the

domain-specific language for component configuration in the Boeing OEP since the project was

stopped because we no longer have access to OEP software releases. There is some hope, however,

that ideas used in our DSL design might be transitioned to other domain-specific language designs,

including a possible application to (meta-) models developed using the OMG Meta Object Facility

(MOF).

24

3 Publications and Technical Paper Overview
Technical details of the work that has been carried out during this project are documented in a

collection of papers and technical reports, most of which are included as appendices to this report.

This section provides a brief overview of each of these documents and explains its relationship to

the project work described in previous sections.

Real-time reactive programming for embedded controllers. R. B. Kieburtz, submitted to the

ACM International Conference on Functional Programming, Florence, Italy, Sept. 3-5, 2001.

[Included as Appendix A] This paper presents motivation and key elements of the Timed

Reactive Systems (TRS) model on which the design of Timber was based.

Abstract: Software-based controllers for physical devices and processes must provide both

algorithmic functionality, which is the usual focus of computer programming, and timely

management of events. Combining these essential aspects is the challenge of real-time

programming. This paper takes a fresh look at the fundamental issues of this discipline and

proposes a synthetic approach that can provide certain guarantees that temporal specications

will be met.

Timber: A Programming Language for Real-Time Embedded Systems. Andrew P. Black,

Magnus Carlsson, Mark P. Jones, Richard Kieburtz and Johan Nordlander, technical report, April

2002.

[Included as Appendix B] This report describes the design of the Timber programming

language including motivating examples, informal explanations of semantics, and details of

concrete syntax.

From the introduction: In this paper we provide a detailed but informal survey of Timber

and its characteristic features. A formal semantic treatment of the language will appear in

other papers; here the exposition will instead be based on short code examples. However,

25

we also introduce the semantic model that underlies one of Timber’s main contributions: the

way that time is integrated into the language.

Reactive Objects. Johan Nordlander, Mark Jones, Magnus Carlsson, Dick Kieburtz, and Andrew

Black, Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing (ISORC 2002), Arlington, VA, 2002.

[Included as Appendix C] This short paper provides high-level insight into the motivation

for the design of Timber and the advantages of programming with reactive objects.

Abstract: Object-oriented, concurrent, and event-based programming models provide a

natural framework in which to express the behavior of distributed and embedded software

systems. However, contemporary programming languages still base their I/O primitives on

a model in which the environment is assumed to be centrally controlled and synchronous,

and interactions with the environment carried out through blocking subroutine calls. The

gap between this view and the natural asynchrony of the real world has made event-based

programming a complex and error-prone activity, despite recent focus on event-based

frameworks and middleware.

In this paper we present a consistent model of event-based concurrency, centered around the

notion of reactive objects. This model relieves the object-oriented paradigm from the idea

of transparent blocking, and naturally enforces reactivity and state consistency. We

illustrate our point by a program example that offers substantial improvements in size and

simplicity over a corresponding Java-based solution.

The Semantic Layers of Timber. Magnus Carlsson, Johan Nordlander, and Dick Kieburtz. The

First Asian Symposium on Programming Languages and Systems (APLAS), Beijing, 2003.

Springer-Verlag.

[Included as Appendix D] This paper presents a formal semantics for Timber that is

structured in three distinct layers: functional, reactive, and scheduling. This work provides

26

a basis for reasoning about programs written in Timber as well as a starting point for

language implementation.

Abstract: We present a three-layered semantics of Timber, a language designed for

programming real-time systems in a reactive, object-oriented style. The innermost layer

amounts to a traditional deterministic, pure, functional language, around which we

formulate a middle layer of concurrent objects, in terms of a monadic transition semantics.

The outermost layer, where the language is married to deadline-driven scheduling theory, is

where we define message ordering and CPU allocation to actions. Our main contributions

are a formalized notion of a time-constrained reaction, and a demonstration of how

scheduling theory, process calculii, and the lambda calculus can be jointly applied to obtain

a direct and succinct semantics of a complex, real-world programming language with well-

defined real-time behavior.

Programming with Time-Constrained Reactions. Johan Nordlander, Magnus Carlsson, and

Mark Jones. Submitted for publication, April 2004.

[Included as Appendix E] This paper explains the role of explicit timing constraints in

Timber programs and the advantages that they provide in the development of real-time

programming applications.

Abstract: In this paper we argue that a programming language for real-time systems should

support the declaration of time constraints, and that those constraints should attach to a

well-developed notion of reactions. To make our claims more precise, we introduce Timber,

which is a concurrent programming language based on a model of non-blocking, reactive

objects. Timber supports both upper and lower time constraints on a reaction, where an

upper constraint corresponds to a classical deadline, and a lower constraint constitutes a

very efficient way of scheduling an event to occur at a well-defined point in the future. A

series of programming examples illustrates how these mechanisms can be used to express

simple solutions to common problems in practical real-time programming.

27

Composed, and in Control: Programming the Timber Robot. Mark Jones, Magnus Carlsson,

and Johan Nordlander, Technical Report, August, 2002.

[Included as Appendix F] This paper explains how the Timber programming language was

used to provide a flexible and compositional approach to the development of control

algorithms for Timbot, the Timber robot.

Abstract: This paper describes the implementation of control algorithms for a mobile robot

vehicle using the programming language Timber, which offers a high-level, declarative

approach to key aspects of embedded systems development such as real-time control, event

handling, and concurrency. In particular, we show how Timber supports an elegant,

compositional approach to program construction and reuse—from smaller control

components to more complex, higher-level control applications—without exposing

programmers to the subtle and error-prone world of explicit concurrency, scheduling, and

synchronization.

Priority-Progress Streaming for Quality-Adaptive Multimedia. Buck Krasic and Jonathan

Walpole, In Proceedings of the ACM Multimedia Doctoral Symposium, Ottawa, Canada, October

2001.

[Included as Appendix G] This short paper presents the key ideas underlying the design of

the Priority Progress Streaming mechanism and its ability to support flexible, dynamic, and

tailorable adaptation.

From the Abstract: We propose that streaming-media solutions targeted at the Internet

must fully embrace the notion of graceful degradation, they must be architected with the

expectation that they operate within a continuum of service levels, adjusting quality-

resource trade-offs as necessary to achieve timeliness requirements. In the context of the

Internet, the continuum of service levels spans across a number of time scales, ranging from

sub-second timescales to timescales as long as months and years. We say sub-second

timescales in relation to short-term dynamics such as network traffic and host workloads,

28

while timescales of months and years relate to the continuous deployment of improving

network, compute and storage infrastructure.

We support our thesis with a proposal for a streaming model which we claim is simple

enough to use end-to-end, yet expressive enough to tame the conflict between realtime and

best-effort personalities of Internet streaming. The model is called Priority-Progress

streaming. In this proposal we will describe the main features of Priority Progress

streaming, which we have been implemented in a software-based streaming video system,

called the Quasar pipeline.

Supporting Low-Latency TCP-Based Media Streams. Ashvin Goel, Buck Krasic, Kang Li,

Jonathan Walpole, In Proceedings of the Tenth International Workshop on Quality of Service

(IWQoS 2002), Miami Beach, Florida, May 2002.

[Included as Appendix H] This paper describes modifications to standard implementations

of the TCP protocol to provide improved support for low-latency streaming.

Abstract: The dominance of the TCP protocol on the Internet and its success in maintaining

Internet stability has led to several TCP-based stored media-streaming approaches. The

success of these approaches raises the question whether TCP can be used for low-latency

streaming. Low latency streaming allows responsive control operations for media streaming

and can make interactive applications feasible. We examined adapting the TCP send buffer

size based on TCP’s congestion window to reduce application perceived network latency.

Our results show that this simple idea significantly improves the number of packets that can

be delivered within 200 ms and 500 ms thresholds.

Infopipes: An Abstraction for Multimedia Streaming. Andrew Black, Rainer Koster, Jie

Huang, Jonathan Walpole, and Calton Pu, Multimedia Systems (special issue on Multimedia

Middleware), 8(5), pp. 406-419, ACM / Springer-Verlag, 2002.

29

[Included as Appendix I] This paper describes a high-level abstraction for describing and

building a wide range of distributed streaming applications, including quality adaptive

systems or components such as Qstream as special cases.

Abstract: To simplify the task of building distributed streaming applications, we propose a

new abstraction for information flow—Infopipes. Infopipes make information flow

primary, not an auxiliary mechanism that is hidden away. Systems are built by connecting

pre-defined component Infopipes such as sources, sinks, buffers, filters, broadcasting pipes,

and multiplexing pipes. The goal of Infopipes is not to hide communication, like an RPC

system, but to reify it: to represent communication explicitly as objects that the program can

interrogate and manipulate. Moreover, these objects represent communication in

application-level terms, not in terms of network or process implementation.

Adaptive Live Video Streaming by Priority Drop. Jie Huang, Charles Krasic, Jonathan

Walpole, and Wu Chi Feng, IEEE International Conference on Advanced Video and Signal Based

Surveillance (AVSS 2003), Miami, FL, July 2003.

[Included as Appendix J] This paper describes the techniques used to extend PPS to

support live video streaming in the Qstream implementation, including experimental results.

Abstract: In this paper we explore the use of Priority-Progress Streaming (PPS) for video

surveillance applications. PPS is an adaptive streaming technique for the delivery of

continuous media over variable bit-rate channels. It is based on the simple idea of

reordering media components within a time window into priority order before transmission.

The main concern when using PPS for live video streaming is the time delay introduced by

reordering. In this paper we describe how PPS can be extended to support live streaming

and show that the delay inherent in the approach can be tuned to satisfy a wide range of

latency constraints while supporting fine-grain adaptation.

30

Quality-Adaptive Media Streaming by Priority Drop. Charles Krasic, Jonathan Walpole, Wu-

chi Feng, in Proceedings of the 13th International Workshop on Network and Operating Systems

Support for Digital Audio and Video (NOSSDAV 2003), Monterey, California, June 2003.

[Included as Appendix K] This paper presents a thorough overview of the PPS protocol as

a mechanism for supporting overload tolerance and graceful degradation.

Abstract: This paper presents a general design strategy for streaming media applications in

best effort computing and networking environments. Our target application is video on

demand using personal computers and the Internet. In this scenario, where resource

reservations and admission control mechanisms are not generally available, effective

streaming must be able to adapt in a responsive and graceful manner. The design strategy

we propose is based on a single simple idea, priority data dropping, or priority drop for

short. We evaluate the efficacy of priority drop as an adaptation tool in the video and

networking domains. Our technical contribution with respect to video is to show how to

express adaptation policies and how to do priority-mapping, an automatic translation from

adaptation policies to priority assignments on the basic units of video. For the networking

domain, we present priority-progress streaming, a real-time best-effort streaming protocol.

We have implemented and released a prototype video streaming system that incorporates

priority-drop video, priority mapping, and priority-progress streaming. Our system

demonstrates a simple encode once, stream anywhere model where a single video source

can be streamed across a wide range of network bandwidths, on networks saturated with

competing traffic, all the while maintaining real-time performance and gracefully adapting

quality.

A Framework for Quality Adaptive Media Streaming. Charles C. Krasic. Ph.D thesis. OGI

School of Science & Engineering at OHSU, February 2004.

This Ph.D. dissertation provides comprehensive treatment of PPS, including motivation,

high-level design, implementation in the Qstream prototype, and empirical evaluation. For

31

reasons of space, we do not include the full document as an appendix but note that it is

available online from http://www.cs.ubc.ca/~krasic/publications/krasic-phd.pdf.

Abstract: This dissertation presents a general design strategy for streaming media

applications in best effort computing and networking environments. Our target application

scenario is video streaming using commodity computers and the Internet. In this scenario,

where resource reservations and admission control mechanisms are generally not available,

effective streaming should be able to adapt to variations in bandwidth in a responsive and

graceful manner. The design strategy we propose is based on a single simple idea,

adaptation by priority data dropping, or priority drop for short. We evaluate the efficacy of

priority drop in the video and networking domains.

For video, we show how common compression formats can be extended to support priority

drop, thereby becoming streaming friendly. In particular, we demonstrate that priority-drop

video allows adaptation over a wide range of rates and with fine granularity, and that the

adaptation is tailorable through declarative adaptation-policy specifications. Our main

technical contribution is to show how to express adaptation policies and how to do priority-

mapping, an automatic translation from adaptation policies to priority assignments on the

basic units of video.

In the networking component of this thesis, we present two versions of Priority-Progress

Streaming, a real-time best-effort streaming protocol. The basic version does classic unicast

streaming for video on demand style streaming applications. The extended version supports

efficient broadcast style streaming, through a multi-rate multicast overlay.

We have implemented a prototype video streaming system that combines priority-drop

video, priority mapping, and the Priority-Progress Streaming protocols. The system

demonstrates the following advantages of our approach: a) it maintains timeliness of the

stream in the face of rate fluctuations in the network, b) it utilizes available bandwidth fully

thereby maximizing the average video quality, c) it starts video display quickly after the

user initiates the stream, and d) it limits the number of quality changes that occur. In

32

summary, we will show that priority-drop is very effective: a single video source can be

streamed across a wide range of network bandwidths, and on networks saturated with

competing traffic, all the while maintaining real-time performance and gracefully adapting

quality.

A Domain Specific Language for Component Configuration. Mark P Jones. Internal Draft for

distribution to PCES TDs, May 8, 2002.

[Included as Appendix L] This report was prepared for use by PCES TDs and collaborators

to document results from the initial development of the Timber-based DSL for the Boeing

OEP. The report was not submitted for approval to be released or published in any venue

with a more general audience.

Introduction: This note describes a domain specific language (DSL) for component

configuration in the Boeing Open Experimental Platform (OEP). The purpose of the DSL is

to make it easier for system integrators to construct and validate configurations from

concise, modular, and reusable high-level descriptions. The design of the DSL reflects

common patterns, terminology, and notations used in the specific domain, which in this

case have to do with initializing software components, and establishing connections

between them. By providing direct support for domain specific idioms, a DSL empowers its

users to express their ideas quickly and concisely, to work more productively, to avoid

certain kinds of coding error, and to tackle more complex problems than might otherwise be

possible. The DSL that we describe here, for instance, has been used to produce a clear and

modular description of the largest example in the current OEP build that is approximately

25 times smaller than the original description written in XML.

A Domain Specific Language for Component Configuration: Preliminary User Notes. Mark

P. Jones. Documentation distributed with releases of the DSL software. Summer 2003.

33

[Included as Appendix M] Although this document was prepared as user documentation, it

also provides details on the design, structure, and benefits of the DSL as it had matured

towards the end of the project.

34

4 Conclusions
This report documents the work and results of the project “Temporally Aware Reactive Systems,”

also referred to informally as “Project Timber.” The original goals of this project were to develop

new language technology and analysis tools to support a compositional approach to programming

of real-time embedded systems.

Responding to corresponding changes in focus within the PCES program as a whole, the technical

focus of our work changed considerably during the lifetime of the project. At a high-level,

however, the project successfully and consistently pursued two main themes:

• The application of domain specific language technology to increase programmer

productivity and to improve software reliability, as demonstrated in a wide range of

applications spanning hard real-time control of a robot vehicle, specification of dynamic

adaptation policies, and build-time configuration of large component-based software

systems.

• The development and application of general patterns and protocols for building flexible,

QoS-sensitive applications that can adapt dynamically and automatically to changes in their

environment and in the computational resources that are available to optimize performance

with respect to user-specified quality preferences.

In both of these areas, working in the context of both Open Experimental Platforms as well as with

independent examples, we were able to demonstrate significant benefits and capability

enhancements over the state of the art as represented, for example, by the two OEPs. These

technologies have matured during our work on this project to the point that they can now

realistically be considered for use in the construction of new, operational systems.

35

APPENDIX A

Real-time reactive programming for embedded controllers. R. B. Kieburtz, submitted to the

ACM International Conference on Functional Programming, Florence, Italy, Sept. 3-5, 2001.

36

http://www.cse.ogi.edu/PacSoft/projects/Timber/timed-cont.pdf

Real-time Reactive Programming for Embedded
Controllers �

Richard B. Kieburtz
Oregon Graduate Institute

ABSTRACT
Software-based controllers for physical devices and processes
must provide both algorithmic functionality, which is the
usual focus of computer programming, and timely manage-
ment of events. Combining these essential aspects is the
challenge of real-time programming. This paper takes a
fresh look at the fundamental issues of this discipline and
proposes a synthetic approach that can provide certain guar-
antees that temporal speci�cations will be met.

1. EMBEDDED REAL-TIME, REACTIVE
SOFTWARE

Many researchers during the past several years have ex-
plored ways in which functional programming languages,
extended with monads to permit disciplined uses of e�ects,
can be applied to programming problems that have formerly
been considered to require the use of lower level, imperative
languages. In virtually every case in which this paradigm
has been tested, it has resulted in simpler, clearer programs
that bene�t from the power of abstraction, expressive type
systems and conciseness of functional language notations.
This paper takes extended functional programming into a
new domain, that of embedded, reactive software with ex-
plicit time constraints.
Embedded software has become ubiquitous in the devices,

appliances and vehicles in common use today. The term
refers to software whose role is to de�ne the behavior of
a host system that incorporates physical devices, operates
continuously in real time and does not require direct human
control or interaction. In an increasing number of applica-
tions, an embedded software controller acts as a surrogate
for a human as, for instance, in the anti-lock braking system
of an automobile.
Embedded software can be active, when it de�nes the tem-

poral behavior of a process, or reactive, when it responds to

�The research reported here has been supported by DARPA
contract numbers F33615-98-C-3516 and F33615-00-C-3042.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

signals from external processes. The software controlling a
digital music synthesizer is primarily active; the software
controlling an anti-lock braking system is primarlily reac-
tive. This paper is concerned with the temporal aspects of
reactive embedded software.
A surprising fact about the accepted design notations for

so-called real-time software is that time is rarely mentioned,
or at least is not mentioned explicitly. The terminologies
more commonly used to specify temporal behaviors are rates
of periodic processes and priorities of aperiodic ones. This
paper explores the consequences of directly specifying the
temporal constraints imposed by a host system on its soft-
ware controller, with the motivation that the control re-
quired of the program might be deduced from such a spec-
i�cation. The apparently challenging task of programming
real-time responses can be made declarative!
A reactive program responds to input events from a host

system by producing output events that are transmitted
as signals to the host. Its responses are e�ected by pro-
grammed reactions; code sequences that are functional in
the sense that we understand functions to be interpreted
in monads that account for e�ects. We think of reactions
as functions from State to State, interpreted in the Events
monad. O'Haskell [9] is a programming language particu-
larly well-suited for writing reactive programs.
The control of a reactive program determines which re-

actions shall be invoked in response to anticipated input
events. This control could be described in imperative pro-
gramming style, as it is in the Esterel language [2], or in a
functional style, as it is in Lustre [4]. In this paper we shall
show how the control for a real-time reactive program can
be derived from a speci�cation of the temporal constraints
on its behavior.
Section 2 discusses general characteristics of embedded,

reactive software. Time constraints are introduced in Sec-
tion 3. In Section 4 we outline an algorithm for comput-
ing a schedule that assures that declared time constraints
will be met. Section 5 describes objects in O'Haskell and
argues why its semantics are appropriate to real-time reac-
tive programs. An example is presented in Section 6. Sec-
tion 7 discusses the integration of computationally demand-
ing, critical-rate tasks with time-critical tasks. The paper
concludes with a discussion of related work.

2. CHARACTERISTICS OF REAL-TIME
REACTIVE SYSTEMS

In a typical real-time application, the task of an embedded
software system is to react to signals generated by a host

37

system in which it resides, providing output signals to e�ect
control of the host system. The host may be a physical
system, equipped with sensors of time-varying parameters
of its state, and with actuators that operate motors, valves
or other physical control devices. A host system might also
include communications hardware, real-time databases, or
other time-varying data sources.
In such an application, the embedded software is not only

required to deliver functionality, but to simulate a process
that is loosely synchronized in time with external processes
in its host system. Physical processes in the host system
are considered to evolve in continuous time. The time con-
straints imposed by a host system add a challenge to the
task of programming embedded software.
A speci�cation for a real-time, reactive, software con-

troller results from analyzing the host system in which the
controller is to be embedded. Interactions between the con-
troller and the host system occur through discrete events.
An input event is a discrete, atomic message from the host
system to the controller. Each occurrence of an input event
is registered when it arrives at the controller. Registration
of an input event implies that the fact of its occurrence has
been recorded in a register that is readable by the controller.
If a data word accompanies an input event, we shall assume
it is latched in a designated register that can be read by the
software.
A software controller reacts to occurrences of input events

by emitting output events to its host system. The �rst task
in analyzing the requirements for a controller is to deter-
mine what input events it must respond to and what output
events may be expected in response to each of these inputs.
The next task is to determine timing constraints that relate
these events.
Both the expected responses to input events and the tim-

ing constraints may depend upon the mode of operation of
the host system. For example, the operational mode of an
aircraft when taxiing on the ground at low speed is very dif-
ferent from the mode of the same aircraft in ight. When
taxiing, inputs from airspeed and altitude measurement sen-
sors require no response and can be ignored, while inputs
from wheel rotation sensors are signi�cant. An input from
the pilot's control yoke may be interpreted di�erently (i.e.
may evoke di�erent responses from the controller) when an
aircraft is taxiing than when it is airborne. Furthermore, the
time constraints imposed to achieve stable control might be
expected to be more lax when an aircraft is taxiing than
when it is in ight.

2.1 Hybrid systems
A hybrid system design combines the aspects of a contin-

uous state space with a �nite set of operating modes that
partition the state space. The hybrid system concept is
widely used to organize and simplify the design of controls
for highly nonlinear systems. In a hybrid design, the control
laws used to regulate or guide a system may be switched as
the system's state trajectory transitions between modes of
operation.
From the vantage point of the control engineer, the oper-

ating modes of a dynamical system are regions of its state
space in which the system dynamics may be approximated
by a simpli�ed system. The simpli�ed dynamics is only
expected to provide an accurate approximation within a de-
�ned region of the system's state space. When operating in

di�erent modes, the system state is subject to di�erent sets
of constraints, and consequently, may satisfy a di�erent set
of dynamical equations.
The state and control signals in a hybrid system may have

both continuous and discrete aspects. A quantity that varies
continuously with time may be modeled by a time series of
discrete values. A discrete event can be localized in time. A
discrete event may be said to occur in a time interval during
which the (continuous) trajectory of a state variable crosses
a designated threshold, as, for instance, when the wheels of
an aircraft touch the ground in landing. Control signals may
also have discrete aspects, as when a motor is turned on, or
a braking actuator is applied.
From the vantage point of a software engineer who is con-

templating the design of an embedded software controller,
its operating modes correspond to discrete states of a �nite-
state transition system. A control state is characterized by
two maps:

1. A mapping from anticipated input events to programmed
reactions. A reaction may emit output events and up-
date the internal state variables of the controller.

2. A mapping of input events to control-state transitions,
which may be guarded by boolean predicates over the
internal variables.

In this view of a controller as a hybrid system, the con-
troller weakly simulates the controlled system, tracking its
mode transitions with transitions of the controller's own con-
trol states, and tracking the trajectory of the system's state
within modes through discrete changes in the controller's
internal state variables.

2.2 Control states and guarded reactions
Reactive programs are often designed as �nite transition

systems. Although the systems we consider may mutable
state variables, this notion of state is not the one we wish to
consider as discrete, because the space of valuations of the
state variables may be in�nitary or even continuous. Rather,
we wish to consider a �nite partition of this space, which we
shall refer to as the set of control states of the system.
A control state is characterized by a mapping of input

events to �nite sets of guarded reactions. A guarded reac-
tion is prefaced by a boolean predicate over the state vari-
able. The meaning of a guarded reaction is that if its guard
evaluates True, the reaction is enabled, otherwise it is not.
A control state is deterministic if at most one guard on its
set of guarded reactions can be True for any valuation of
the state variables, otherwise it is nondeterministic. When
a set of guarded reaction is dispatched in response to an
input event, its guards are evaluated, and if any reaction
becomes enabled, one of the enabled reactions is selected
for invocation.
Since a reactive program is of bounded length, it can con-

tain only a �nite number of guarded reactions, hence, there
is only a �nite number of control states, no matter what
may be the cardinality of valuations state variables. Since
executing a reaction may alter the values of state variables,
it can induce a transition of the control state, i.e. change
the values of some guards.
Guards must be restricted so as not to contain calls to

recursively de�ned functions, so the evaluation time of a
guard can be bounded. Guards are pure expressions, i.e.
they can be interpreted in the Identity monad.

38

2.2.1 Hierarchical transition systems and concurrent
objects

A reactive system is often designed as a collection of inter-
acting component subsystems, which operate concurrently
and interact asynchronously by exchanging messages. A
system designed in this way can be modeled as a system
of nested, nondeterministic, �nite automata [5]. It can be
implemented as a system of concurrent objects with asyn-
chronous methods to support interaction.
In a concurrent object implementation, a reactive sys-

tem has a composite state represented by the internal, pri-
vate state variables of its component objects. The compos-
ite state of the system is distributed over the states of its
components. Reactions are realized by method invocations.
Distinct objects may execute methods concurrently, corre-
sponding to concurrent transitions of independent transition
systems. As objects have private state variables, methods
of distinct objects share no common variables and hence do
not interfere when executed concurrently.

2.3 Synchronizing a controller with external
processes

The \real-time" aspect of an embedded software controller
is the requirement that it must be synchronized with one or
more external processes in its host system. The precision
needed in this synchronization is calibrated by the time de-
lay that can be tolerated between the arrival of an input
event and the delivery of an output event in response to the
input. If synchronization is not suÆciently precise, the ac-
curacy of information represented by a series of input events
will be degraded, as well as the accuracy of the control ef-
fected by a series of output events. Extreme degradation
of control accuracy because of excessively delayed response
can result in loss of stability of the dynamical system under
control.
The precision required to synchronize a controller with

its host system depends upon the nature of the interac-
tion and may not be uniform over all classes of events, even
within a single application. We shall call the allowable time
delay between an input and an output the response time
of the input-output pair. The required response times for
events in a system can be represented by a partial function
response time : Inputs �Outputs ! Time.
When there are multiple channels for interaction between

a controller and its host system or when the host system
is comprised of several independent processes, multiple in-
put events may arrive simultaneously at the controller. In
physical terms, simultaneity means that the separation in
arrival times of two or more events is less than the temporal
precision with which event arrivals are registered.
When input events cannot be separated by their time of

arrival, it makes no sense to schedule their responses in order
of arrival. Instead, the speci�ed response times for input-
output pairs provides a scheduling criterion. A criterion for
a successful schedule of responses is that regardless of the
order in which input events may have arrived, the response
to every input event is emitted within the required response
time.

2.4 Process velocity and inter-event latencies
Another factor inuencing the design of a software con-

troller is the rate or rates at which external processes in the
host system are able to deliver input events to the controller.

The anticipated event arrival rates, multiplied by the per
event cost of processing, determine the process performance
required of a controller.
Event arrival rates are not necessarily uniform, as some

classes of events may occur at unpredictable times. Nev-
ertheless, there is inevitably a latent period separating the
generation of an event by a process from the generation of a
subsequent event by the same physical process. Informally,
we refer to the rate at which a process is capable of gener-
ating event occurrences as its process velocity. A reciprocal
measure is the minimum inter-event latency of the process.
Since we do not ordinarily wish to specify in detail the ex-

ternal processes that constitute the host system of a software
controller, we shall instead specify inter-event latencies di-
rectly. The latencies characterizing the maximum velocities
of external processes can be speci�ed by de�ning a partial
function, latency :: (Inputs [Outputs)� Inputs ! Time.

2.4.1 Clocks
Periodic sampling of a continuous process provides a uni-

form process velocity as observed by interactions with a con-
trol process. The apparent velocity of a sampled process is
determined by the frequency of a clock process that strobes
sensors of its observable parameters. A clock is necessarily
a process external to a software controller, because the soft-
ware has no inherent access to the timing provided by the
hardware processor that executes it.
We distinguish three commonly used modes of interaction

with an external clock process:

� a synchronizing clock delivers a stream of primitive in-
put events (ticks) to which a software controller reacts.
A tick event carries no data, but ticks may be accu-
mulated in an internal state variable as a measure of
elapsed time. The tick of a synchronizing clock pro-
vides an event at which a software controller can be
activated to react to any input events that have ar-
rived since the preceding clock tick.

� a metric clock does not deliver input events, but pro-
vides a read-only register that can be read at any time
to provide a measure of \absolute" time. This allows
the controller to measure elapsed time by taking the
di�erence between a current and a prior reading of the
metric clock register.

� an interval timer is a clock that can be set by an out-
put event emitted by the controller. A timer-setting
event speci�es a time interval after which the clock will
respond with an input event.

A real-time operating system normally provides a timing
service that incorporates one or more of these modes of clock
interaction.

2.5 Reactions take time
In de�ning the synchrony assumption in connection with

reactive programming, Berry and Gonthier state that \re-
actions are presumed to be instantaneous" [2]. This slo-
gan represents the assumption that the computation time
needed for a controller to calculate a reaction to a given in-
put event is very much less that the allowed response time to
this or any other event. Insofar as this assumption is valid,
the output events emitted by a reaction to an input event
occur synchronously with the input event.

39

Re�ning this notion slightly, the idea of synchrony can be
tied to the precision with which the time of occurrence of
events can be discriminated, by any observer in a system.
If an observer can discriminate events a and b whenever
they are separated by an interval of at least �t, then the
response time for a reaction that responds to a by emitting
b must be less than �t, for otherwise, the system's temporal
speci�cation would be suÆciently lax that an observer might
detect the delay introduced by its processing of events.
Clearly, the assumption of negligible reaction times is not

valid in all circumstances. In developing a discipline of real-
time reactive programming, we are interested in situations
in which reaction times must be accounted for. We shall
relax the assumption of instantaneous reactions to one that
seems more realistic. We assume that for each reaction,
there is a stable distribution of its execution times, which
can be estimated by measurements conducted on the com-
puting platform on which an embedded software system is to
be installed. We assume that these distributions have Gaus-
sian tails and therefore allow us to predict upper bounds on
the execution times of individual reactions that can be ex-
pected to hold with probability as near to 1 as is required.
Let ReactionTime :: Reactions ! Time, where Time is a

type synonym for the positive real numbers. ReactionTime�
is an upper bound on the time taken for a synchronous ex-
ecution of the reaction �.
Unlike response time and latency, reaction times cannot

be obtained by analysis of requirements imposed by the host
system. Reaction times can be determined only after a soft-
ware controller has been designed and implemented. One
way to determine reaction times is by measuring the time
taken for repeated executions of reaction codes on a plat-
form nearly identical to that on which the controller is to
be installed. From the measurements, one can determine
a distribution of times for each reaction. The distributions
provide an empirical basis from which to estimate upper
bounds on the execution times of individual reactions.

2.5.1 Reactions are atomic actions
Reactions are functions (interpreted in the Event monad1)

that are programmed to implement the functional require-
ments of an embedded controller. A reaction is applied to
the current state of the controller in response to an input
event. The computation of a reaction must occur atomi-
cally and without noticeable interruption of processor ser-
vice, for otherwise, reaction times could not be predicted
with any degree of con�dence. Furthermore, the code body
of a reaction must not contain calls to any recursively de-
�ned function, nor can it invoke other reactions, because
its execution time must be uniformly bounded. Viewed as
procedural code, the body of a reaction can have no loops.
However, the scheduling of reactions need not be pro-

grammed as it would be in an imperative reactive language.
Time-bounded reactions can be dispatched in response to
arrivals of input events according to �xed schedule. If there
exists any feasible schedule that can assure that execution
of time-bounded reactions can always satisfy the time con-

1The Event monad is a composition of a state monad with
a monad whose e�ects are discrete interactions with a host
system. The command emit [event] is a non-proper mor-
phism of the Event monad. The state object of the monad
is internal to the program and is not visible to the host sys-
tem.

straints of a temporal system speci�cation, then such a sched-
ule can be calculated statically from the system speci�ca-
tion and the bounds established on reaction times. In Sec-
tion 4 we present an algorithm for calculating a feasible
static schedule.

3. TIME-CONSTRAINED EVENT SYSTEMS
Taking a more abstract view of real-time systems, we shall

designate as an event any interaction between a program
and the environment in which it runs. An event may carry
a value or not. An event class is designated by an identi�er,
optionally bound to a type. Let

Events be a �nite set of events,
Inputs � Events be a �nite set of input events,
Outputs � Events be a �nite set of ouput events,

This partition of events is arbitrary, but useful in concep-
tualizing the interactions of a program with its environment.

3.1 Specifying temporal properties
The host system of an embedded controller determines

temporal constraints on the interactions of the controller
with the host system. A temporal system speci�cation binds
identi�ers to the possible input and output events, gives
the type of data (if any) that accompanies an event, and
prescribes constraints on the temporal orderings of events.

Inputs :: identi�er j : : : j identi�er
Outputs :: identi�er j : : : j identi�er
ResponseTime :: (Inputs;Outputs)! Time
DelayedResponse :: (Inputs [Outputs;Outputs)! Time
Latency :: (Inputs [Outputs; Inputs)! Time

The constraints that de�ne temporally correct behavior
of the control process are interpreted as follows.

� If ResponseTime(a; b) is de�ned and yields the time
interval Æa;b, then whenever an occurrence of event a

evokes emission of event b in response, event b must
be emitted no later than Æa;b seconds after event a
has arrived. Response times characterize a reactive
process.

� If DelayedResponse(a; b) is de�ned and yields the time
interval �a;b, then whenever an occurrence of event
a evokes emission of event b in response, event b may
occur no earlier than Æa;b seconds after the occurrence
of event a. Delayed responses characterize an active
process.

� If Latency(a; b) is de�ned and yields the time interval
a;b, then we can be assured that an occurrence of in-
put event b will never happen earlier than a;b seconds
following an occurrence of event a.

An unconstrained input event may potentially occur at any
time. Therefore, we expect that a complete temporal system
speci�cation will include a latency relation for every possible
input event. In particular, it is quite common to have a
latency speci�cation of the form Latency(a; a) = Æa, which
prescribes the minimum time in which an input event a can
follow a previous occurrence of the same sort of event.
A temporal system speci�cation must be accompanied by

a functional description of a host system, which may be

40

given formally or informally. A functional description spec-
i�es the modes of operation of the host system and deter-
mines what outputs should be emitted in reponse to possible
inputs in each of the operating modes.

3.1.1 Satisfying response time constraints
The discrete event hypothesis arose because of limited

ability to resolve occurrences of events in continuous time.
Events whose arrival times cannot be resolved are considered
to have occurred simultaneously.
As a simplifying assumption, suppose that the reaction

to a set of two or more input events can be any sequential
composition of the reactions to the individual events, as if
they had arrived in an arbitrary order. A suÆcient condition
for a system of synchronous reactions to satisfy the response
time constraints of a system is met if

a. the latency relation forbids the occurrence of an un-
bounded number of events in any �nite time interval,
and

b. for any set of events whose latency constraints do not
preclude their simultaneous occurrence, the sum of re-
action times is less than the speci�ed response time for
any reaction to an event in the set.

However, the above condition may be far more stringent
than necessary, for it fails to take into account our ability
to schedule the dispatch of reactions to a set of input events
that await responses.

4. INFERRING A FEASIBLE SCHEDULE
FROM REAL-TIME CONSTRAINTS

Given a �nite set of enabled reactions, each with a pre-
dictable execution time and a deadline time by which each
reaction is to be completed, an earliest-deadline �rst (EDF)
algorithm [8] will determine a feasible schedule, if one exists.
This easy scheduling problem is complicated by the ar-

rivals of new input events that enable additional reactions.
We must frame the algorithm in relative time, rather than
absolute deadline times, because the response times allowed
for reactions are measured from the time of arrival of events.
We must also take into account the latencies that constrain
the arrival of input events, for otherwise, a system may be
overloaded with an unbounded number of input events that
require timely responses.
New events may arrive from the host system while the

controller is dormant or while it is executing a reaction to a
previously registered event. We assume that the controller
is activated immediately if a new event should arrive while
it is dormant. (This might be accomplished by preempt-
ing the execution of a non-real-time task.) When a reaction
completes executing, the controller polls registers in its en-
vironment to determine if new events have arrived. If events
have arrived, the controller's dispatch function determines
which reaction should be the next to execute.
We shall consider the problem of calculating a static sched-

ule, or dispatch table, for each control state of the controller.
A schedule is calculated from the temporal speci�cation of
events required by the host system and the execution time
bounds for reactions.
Since the latencies constraining the arrivals of input events

depend upon the history of activity (both input events re-
cently arrived and output events recently emitted), discov-

ering a feasible schedule has aspects of a dynamic program-
ming problem. We calculate a schedule over a bipartite
tree, whose nodes are labeled by con�gurations of time-
constrained event sets.
A scheduling con�guration is represented as a record of

type:

fstate :: State;
evts :: f(Inputs� Int)g;
constrained :: f(Inputs� Int)gg

where state represents the simulated control state, evts is a
set of input events whose arrival has been registered with
the controller, each paired with a bound on the (simulated)
time since its arrival, and constrained is a set of latency-
constrained events, each paired with a lower bound on the
time remaining until an event of this sort might arrive. Tran-
sitions of the control state are determined by a state transi-
tion function, transition : State� Reaction ! State.
A con�guration, C, is said to be feasible if it satis�es the

following condition. For each pair (e; t) in evts, let the as-
sociated reaction, when the controller state is s, be denoted
by �s;e (notice that this reaction might be null). Let !s;e

designate the set of output events that might be emitted by
�s;e. Let �s;e = mine02!s;e

RT(e; e0).
The feasibility condition for a con�guration is:

feasible(C) = 8s : State 8(e; t) 2 C:evts �
(�s;e � t� ReactionTime �s;e � 0)
_ (�s;e = null)

The calculation of a schedule elaborates a branching-time,
temporal simulation of the possible interactions of the con-
troller and its host system. This simulation can be modeled
as a �nitely branching tree of unbounded depth.
A scheduling tree contains two types of nodes, which al-

ternate along any path descending from the root. The node
types are:

� dispatch nodes. Arcs emanating from a dispatch node
are labeled by reactions.

� arrival nodes. Arcs emanating from an arrival node
are labeled by sets of input events.

A scheduling tree is like a game tree. At a dispatch node, any
outward arc may be chosen to continue elaboration. At an
arrival node, no choice is allowed. The simulation must be
elaborated along all outward arcs. The root of a scheduling
tree is labeled by an arrival con�guration that speci�es the
initial control state, an empty set of registered events, and
an empty set of constraints on arriving events.
To elaborate an arc from an arrival node labeled by C and

whose incident arc is labeled by reaction �, construct outgo-
ing arcs labeled by members of the powerset, }(Inputs�fc0 j
(c0; t) 2 C.constrainedg). The con�guration labeling the
node reached by an arc whose label is � is:

fstate = C.state;
evts = C.evts [f(e; t) j e 2 � ^ t = ReactionTime �g;
constrained = C.constrainedg

A newly arrived event is pessimistically assumed to have ar-
rived at the time the preceding reaction was invoked, thus
when execution of the reaction concludes, the event has al-
ready been resident for the duration of the reaction time.

41

To elaborate an arc from a dispatch node labeled by fea-
sible con�guration C, choose (e; t) 2 C.evts, if C.evts is not
empty. Let �e = reactionTo(C.state; e). Form a new node
labeled by the con�guration,

C
0 = fstate = transition(C.state; �e);

evts = f(e0; t0) j (e0; t) 2 C.evts
^ e0 6= e
^ t0 = t+ ReactionTime �eg;

constrained = f(c; t0) j (c; t) 2 C.constrained
^ t0 = t� ReactionTime �e
^ t0 � 0gg

Label an arc from node C to C0 with the reaction �e. If
a node label is not a feasible con�guration, then that node
has no successors in the tree.
A scheduling tree is feasible if at every dispatch node, C,

either C.evts 6= [], or C has at least one feasible successor.

4.1 Configuration subsumption
The purpose of elaborating paths in a scheduling tree is

to discover and eliminate paths that inevitably lead to in-
feasible con�gurations. These, along with the paths that
terminate on dispatch nodes with empty evts sets, are the
�nite paths in the tree. Clearly, we must have a criterion for
stopping the elaboration of a path when we discover that it
is not �nite.
Algorithm termination is based upon the notion of con�g-

uration subsumption. Informally, we say that a con�gura-
tion C subsumes a con�guration C0 if for every feasible path
elaborated from C0, there is a corresponding path that can
be elaborated from C. The notion of correspondence of two
paths is that they have the same sequence of edge labels.
More precisely, we say that C subsumes C0 if the following

conditions are satis�ed:

C:state = C 0:state
8(e0; t0) 2 C 0:evts 9(e; t) 2 C:evts � e = e0 ^ t � t0

8(c; t) 2 C:constrained 9(c0; t0) 2 C 0:constrained �

e = e0 ^ t � t0

That is, C0 has the same state as does C, every event regis-
tered in C0 is also registered in C with possibly longer time
of residence in C than in C0, and every event constrained in
C is also constrained in C0 with its time of constraint in C
possibly shorter than in C0.

4.2 A static scheduling algorithm
We have implemented a scheduling algorithm in Haskell

which elaborates a scheduling tree as outlined above. Its
result is either a schedule, represented by a set of quadru-
ples of type (State � }(Inputs) � Inputs � Reactions), or it
reports failure. A quadruple (s; evts; e; r) is interpreted by
the dispatch function of a controller to mean \when in state
s with a set of registered input events evts, dispatch reaction
r and retire event e".
The algorithm returns only a single feasible schedule, al-

though there may be many. If the choice of a reaction to
choose in elaborating a dispatch node of the scheduling tree
does not result in a feasible schedule, other choices must be
explored for completeness. The algorithm limits its choices
to the EDF strategy. Although this strategy is not complete
for the scheduling problem we have posed, it seems that it
would require a pathological construction to demonstrate an
example on which EDF fails, yet a feasible schedule exists.

Con�guration subsumption limits the depth of exploration
of a scheduling tree. The algorithm maintains two lists of
con�gurations whose feasibility has been resolved: those
from which a feasible, in�nite path from a dispatch node
labeled with the con�guration in known to exist and those
for which it is known that there is no such feasible path. In
addition, it maintains a list of the unresolved con�gurations
of dispatch nodes on the path from the node being explored
back to the root.
Whenever the current node's con�guration subsumes a

previously successful con�guration or the unresolved con�g-
uration of an ancestor node, the algorithm ceases to elabo-
rate its successors. Either the con�guration has been proven
to be successful, leading to at least the same feasible paths
as the successful con�guration that it subsumes, or the algo-
rithm has discovered a path segment that can be repeated
inde�nitely, implying that no new information will result
from its further exploration.
Whenever the con�guration of the current node is sub-

sumed by that of a node that generates only infeasible paths,
it has been proven to be unsuccessful, for either it man-
dates more stringent deadline constraints or it allows uncon-
strained events to enter sooner than does the con�guration
that subsumes it.
The lazy evaluation of Haskell limits the amount of com-

putation necessary to �nd a feasible schedule. The algo-
rithm simulates backtracking by producing a list of the fea-
sible schedules that can be discovered from each choice point
[11]. These lists are, of course, evaluated lazily, and often
only the �rst element is demanded. The strategy of sav-
ing both the feasible and infeasible con�gurations that have
been encountered in elaborating a scheduling tree e�ectively
gives the algorithm a dynamic programming behavior rather
than that of a less eÆcient, backtracking algorithm.

5. ASYNCHRONOUS REACTIVE OBJECTS
IN O’HASKELL

Components of a reactive system designed as a hierarchy
of interacting, �nite-state transition systems are quite nat-
urally programmed as objects with a particular set of char-
acteristics. Each component automaton can be represented
by an object. Objects used in this way have a number of
characteristics:

� Independence|distinct components do not share state;

� Concurrency|actions of distinct objects may execute
concurrently with respect to one another;

� Asynchrony|inter-component communication normally
occurs through non-blocking messages;

� Sequentiality|the actions of an individual component
occur in sequence, not interleaved;

� Passivity|a component is activated only by the mes-
sages to which it reacts; it has no background activity;

Since objects do not share state, components are coupled
only through their message-passing interfaces. This allows
their actions to be executed concurrently without additional
synchronization. An asynchronous message triggers the exe-
cution of a method in an object, but the sender of a message
does not await a return. The sender of a message and the

42

actor which receives the message and reacts to it are not
synchronized.
Since the actions (method executions) of an object do not

block on messages they may send, each action, once initi-
ated, can be executed to completion. An object executes its
actions sequentially, without interruption. Furthermore, an
object is active only when it is executing one of its methods
in response to a message it has received.
This set of characteristics (one might call them restric-

tions on an object's behavior) is characteristic of the actor
model of computation [1]. It has been used as a basis for the
semantics of objects in O'Haskell [9], a functional, object-
oriented programming language.

5.1 O’Haskell—a functional language
with simple objects

O'Haskell embeds a purely functional expression language
based upon Haskell version 1.3, complementing the expres-
sion language with objects that encapsulate state. Unlike
conventional OO languages, O'Haskell does not support ob-
ject inheritance, in which a hierarchy of objects can share
components of state with other objects above them in the
hierarchy. It does support subtyping, allowing a program-
mer to declare a hierarchy of object types. The methods
of O'Haskell objects are �rst-class entities, as are the ob-
jects themselves. The monadic type system inherited from
Haskell eliminates the possibility of confusion between state-
ments and expressions. We have used O'Haskell for proto-
typing reactive systems programs.

5.1.1 O’Haskell has no explicit threads
One of the most taxing aspects of concurrent program-

ming in a conventional OO language, such as Java, is syn-
chronizing the activities of multiple threads. In Java, threads
are explicitly created by a program. Multiple threads can be
active in an object and thus can potentially share simulta-
neous access to the object's state. To ensure deterministic
behavior for an object in which multiple threads can run,
thread activities must be synchronized with monitors that
control access critical regions of code in which state variables
may be accessed.
In O'Haskell, threads are implicit, rather than explicit.

Exactly one thread is allocated (implicitly) for each object.
That thread is awakened when the object executes a method
in response to a received message. The thread is dormant
when there are no outstanding messages for the object.

5.1.2 Synchronous and asynchronous methods
A method of an O'Haskell object may be either a syn-

chronous or an asynchronous action. A synchronous request
returns a value to the sender of a message calling the request.
The sender waits for the result. An asynchronous action is
non-blocking on the sender of a message. The computational
consequences of an asynchronous action can be seen in the
update of an object's state, or in the receipt (by other ob-
jects) of additional messages that may be sent in executing
the action.
Requests and actions are typed in the Object monad in

the O'Haskell type system, so that they cannot be confused
with pure functions. (The Object monad may be considered
to subsume the IO monad of Haskell.) An method typed
in the Object monad can reference the state variables of the
object and can be composed of commands that include de-

structive assignments to object variables, as well as sending
messages to objects. O'Haskell provides a convenient do
syntax that can be used in the code body of a method to
compose sequential commands.

6. EXAMPLE: THE REFLEX GAME
As an illustration, we shall consider the Reex Game,

a simple reactive system that has been widely studied as
an example problem for reactive programming languages [3,
7]. Here, however, we shall explicitly specify temporal con-
straints on the game.
In the Reex Game, a human player tests the speed of

her reexes by pressing a button as quickly as possible af-
ter given a signal to do so. The controller measures the
elapsed time between display of the go-ahead signal to the
player, and sensing the button push. To deter anticipatory
responses by the player, the controller delays display of the
go-ahead signal by a randomly selected interval following the
player's signal that she is ready to play. An early push of
the button by the player terminates the game. If the player
pushes the Ready button when it is not expected, a warn-
ing bell is sounded. A new game is initiated by the player
by depositing a coin in a slot. A game consists of a �xed
number of trials.
Following this informal description of the game, we specify

the input and output events of the controller:

Input Events
Coin, Ready, Stop

Output Events
Game_light_on, Game_light_off,

Warning_bell, Go_ahead_light_on
Go_ahead_light_off, Tilt_light_on,
Tilt_light_off, Display (Int)

The response time constraints impose maximum times (in
milliseconds) between an input event and an output event
delivered in response to that input. Latencies provide mini-
mum intervals that separate an input event from a speci�ed
sort of preceding input (or output) event.

Response Times

(Coin,Game_light_on,250),
(Ready,Warning,150),
(Stop,Go_ahead_light_off,10),
(Stop,Warning_bell,150),
(Stop,Game_light_off,150),

(Stop,Tilt_light_on,150)

Latencies
(Coin,Coin,2000),
(Ready,Ready, 1000),
(Stop,Stop,1000)

Notice that in the set of temporal constraints declared above,
the output event Go ahead light o� delivered in response to
a press of the Stop button has a much shorter response time
than any of the other events. We shall return to this issue
when we discuss the calculation of a schedule.
One more speci�cation is needed to govern the tempo-

ral behavior of the system. Delay times specify minimum
intervals that separate output events when there are no in-
tervening arrivals of input events. Delay times regulate the

43

rates at which spontaneous generation of outputs can occur.
In the speci�cations given below, two sorts of spontaneous
output events are regulated. The Game light off event, oc-
curring spontaneously, ends a game because there has been
no input from the player for a predetermined timeout inter-
val. The Display event may occur spontaneously to refresh
the display at the beginning of a new trial. The delay spec-
i�ed between occurrences of the Display event ensures that
if the user does not initiate a new trial herself, the display
will hold the value of her reex time for a speci�ed interval.

Delays

(Go_ahead_light_on,Game_light_off,10000),
(Game_light_on,Game_light_off,10000),
(Warning_bell,Game_light_off,10000),
(Display,Display,3000),
(Display,Game_light_off,3000)

6.1 The Reflex Game as a hybrid system
Although the controller for the Reex Game is not re-

quired to simulate the dynamical behavior of a continu-
ous system, it must nevertheless maintain an approximate
record of the passage of time, in addition to other, discrete
state variables. From the point of view of the designer, a hy-
brid system is one in which there is a �nite space of control
states that is much smaller than the state space of valuations
of the controller's state variables.
For the Reex Game, we have designed a �ve-state con-

troller. States Idle, Holding, Counting, Play and Display
correspond to the operating modes informally described above.
A state transition diagram is shown in Figure 1.
From the diagram in Figure 1, the reader will notice that

the system makes transitions guarded by temporal events|
when the elapsed time in a state exceeds a given bound|
in addition to transitions triggered by input events. The
bounds on elapsed time spent in states Play, Counting and
Display are extracted from the delay declarations given in
the preceding section. For instance, a transition from state
Play to Idle can occur 10000 msec. after a transition into
the Play state, if no input-induced transition has occurred.
This is determined from the delay constraint between an
occurrence of output event Game light on, which is emitted
by the reaction to a Coin drop event, and an occurrence of
Game light off, which is emitted by a reaction that accom-
panies entry into the Idle state. The bound on elapsed time
in state Holding is a value calculated from a pseudo-random
sequence generator.

6.2 Scheduling reactions of the Reflex Game
Speci�cations of input and output events, response time

constraints, delay times and latencies are obtained from the
problem speci�cation, The set of control states, state tran-
sitions, the set of reactions and the output events emitted
by each reaction cannot be gotten by speci�cation alone but
may be extracted from the program of a controller by a
straightforward analysis. The execution times of reactions
cannot be determined accurately by analysis, but a distri-
bution can be measured. The combined data are gathered
in a text �le for input to the scheduling algorithm.
For the �ve-state controller of the Reex Game, with ten

reactions and estimated reaction times ranging from 10 to
35 ms., the scheduler produces a scheduling table with 76
entries. A typical entry reads as:

(Counting,[Coin,Stop],Stop,DisplayTime)

Its interpretation is that when the controller is in state
Counting and the set of registered events is fCoin,Stopg,
then the DisplayTime reaction is to be dispatched, retiring
the event Stop.
The existence of a feasible schedule is sensitive to the time

constraints and the estimated reaction times given to the
scheduler. When the scheduler reports that there is no fea-
sible schedule, a designer has several options. Obviously,
it can be important to sharpen estimates of the bounds on
reaction times. However, redesign of the �nite-state tran-
sition system that de�nes the controller can also improve
schedulability.
For instance, when the controller is in state Counting (re-

fer to Figure 1) the Stop event causes a reaction that emits a
display output, which has a critical response time relative to
the arrival of the Stop input. However, if a Ready event were
received just before a Stop event occurred, the Ready event
would be reacted to �rst, and would leave the controller still
in the Counting state. In the worst case, accounted for by
the scheduler, the execution time for a reaction to this hypo-
thetical Ready event must be subtracted from the response
time to obtain the time remaining for the reaction to the
Stop event to be completed. It is this sort of circumstance
that is detected by the static scheduling algorithm when it
reports no feasible schedule.
A designer can sometimes remedy such a circumstance by

state-splitting in the design of the controller. In the case
outlined in the preceding paragraph, a new state, Reset,
might be introduced. If a Ready event occurred when the
controller was in the Counting state, it would transition to
the Reset state, from which the Counting state would be re-
entered after another random time interval. Any intervening
Stop event that occurred while in the Reset state could be
ignored. The possibility of temporal competition between
reactions to the Stop and Ready events in the Counting state
would be eliminated. Obviously, any such redesign must
satisfy the requirements of the application.

6.3 A statically scheduled simulation
of the Reflex Game in O’Haskell

To program a simulation of the Reex Game in O'Haskell,
we have declared a module called game to represent the con-
troller. This module takes as parameters the imported envi-
ronment that provides access to actuators linked to physical
control of the game devices, a statically calculated schedule
for dispatching reactions to events (Section 4) and the seed
of a random sequence generator. For simulation, the module
imports a Tk environment instead of an actual machine to
realize the game interface.
The �rst entity declared in the body of the game module

is an object template that declares a set of state variables,
whose scope is restricted to methods of the game object.

game env schedule seed =
template -- the game state and initial values

state := Idle
evts := Empty
time := 0 :: Int
rand := 0 :: Int
startTime := undefined
totalTime := 0 :: Int

trialNumber:= 0 :: Int

44

Ready

 Idle

Display Counting

Play Holding

Coin

Coin

Stop

ReadyCoin

* Coin, (time>delay) & (n_trials<Max)

(time>limit)

(time>delay) &
(n_trials=Max)

Ready, Stop

Stop

(time>limit)

(*)

Ready, Stop
Ready

(time>random)

Figure 1: Control states of the Reex Game

The game module also includes declarations of action
methods that de�ne the programmed reactions of the con-
troller to input events. Since the reactions to input events
may be particular to each control state, there are more reac-
tions de�ned than the number of possible input events. Our
controller de�nes ten reactions, including a \no-op" reaction
for completeness.
Since the game undergoes state transitions on temporally

de�ned conditions, it is useful to distinguish a sort of internal
event that we choose to call Tick. The Tick event will be
calibrated by one of the timing services provided by the
environment.
A typical reaction is count, which responds to a Tick event

when the controller is in the Holding state.

count = action
if time >= delayTime then

st <- env.timeOfDay

startTime := st
setGameState Counting Go_light_on

else
time := 1 + time
setTimer

The guard on this reaction is manifested in an if : : : then
: : : else clause. On a True value of the guard, a call to
setGameState realizes a control state transition and simul-
taneously emits an output event. On a False value of the
guard, there is neither a state transition nor a visible output
event, but a state variable (time) is updated and a call to
setTimer resets an interval timer in the environment.
In addition to the code of its ten reactions, the game mod-

ule contains

� a main procedure that initializes the display environ-
ment,

� an arrival action that responds to the arrival of input
events by adding new arrivals to the set of outstanding
inputs that await reactions,

� the methods setGameState and setTimer,

� a dispatch method that interprets the schedule ar-
gument and reads the evts variable. The dispatch
method runs a reaction whenever the set of outstand-
ing events is non-empty and removes from this set the
event to which the reaction responds.

Control of reactions is not explicitly programmed . The
Reex Game controller is a declarative realization of a time-
constrained state transition system.

6.4 Timing
In the Reex Game simulation, we have used a low-resolution

interval timer provided by the Tk interface to calibrate the
delays speci�ed for the controller. The setTimer action re-
quests a Tick event in 500 ms. It is unnecessary, in this
application, to calibrate delays with any greater precision.
Where more precise timing is needed, the Reex Game

implementation requests a reading from a metric, time-of-
day register provided by its run-time environment. This
relies ultimately on the timing of the hardware platform
on which the application runs. The player's reaction time
is taken to be the di�erence of two readings of this clock.
The �rst reading is taken by a reaction to a Tick event,
when the \Go" light is turned on. The second reading is
taken by a reaction to a Stop event caused when the player
presses a button. The response times declared for these
events determine bounds on the precision expected of this
measurement.
The Reex Game as programmed in Esterel [3] relies upon

a synchronizing clock with 1ms. precision. This imposes a
burdensome performance requirement on the computing sys-
tem that supports the game controller, for it must respond
to tick events of this clock at a considerably higher frequency
than other events are expected to occur in the system.
Contrast that situation with the version of the example

proposed here. In our version, a metric clock measures time
rather than using the software controller to count the ticks of
a synchronizing clock. An interval timer emits tick events at
most every 500 ms, rather than at every millisecond interval.
The average rate of arrival of events in this version will be
far lower than the rate imposed by tick events in the version
timed by a synchronizing clock.

45

In general, reducing the arrival rate of time-critical events
is a good thing, for it reduces the frequency of expensive
context switches, allowing more processing time to be ded-
icated to tasks that do not have �rm response time con-
straints. Although the Reex Game does not specify any
such tasks, many complex embedded applications do involve
computation-intensive tasks that rely upon processor cycles
to be available between reactions to time-critical events.

7. CRITICAL-RATE TASKS
Up to this point, the focus of our attention has been time-

critical events, whose response times are typically far shorter
than inter-event latencies. Reactions to these events must be
very short computations, for reactions must execute within
the required response times.
Many applications also entail tasks that require more com-

putation time, but whose responses are less urgent. We call
these critical rate tasks, for the rates at which they provide
service is more critical than the actual times of delivery of
the service.
For example, a controller of an autonomous vehicle that

employs terrain-following guidance will execute time-critical
tasks that directly control the vehicle to maintain its course
and attitude. In addition, there will be a critical-rate task
that responds to terrain-sensing inputs such as radars, sonars,
or computer vision systems, and which may consult a geo-
graphical database to navigate the vehicle. The output of
such a task will be a course heading to follow during the
next segment of the vehicle's trajectory. The navigation
task requires far more processor time than does vehicle con-
trol. Its response time is dictated by the vehicle's speed and
the lengths of segments for which headings are calculated.
This response time may be as long as the latency between
requests for a new course heading.
Operationally, one distinction between time-critical and

critical-rate tasks is that the former must be executed with-
out interruption to assure response times, whereas the latter
must be assured a speci�ed fraction of the total processor
time during each reaction. Conventionally, rate-monotonic
scheduling is used to determine whether the processing needed
by a set of critical-rate tasks can be provided.

7.1 Interactions between time-critical
and critical-rate tasks

In the example of a terrain-following autonomously con-
trolled vehicle discussed above, the vehicle control task holds
the vehicle on course for an individual path segment. Path
segments are calculated incrementally, as the vehicle pro-
ceeds along its trajectory, by the navigation task. The head-
ing and length of the next segment must be communicated
to the vehicle control task by the time the vehicle reaches
the end of the segment it is traversing.
In the O'Haskell object model, we can distinguish the ob-

jects that serve time-critical and critical-rate tasks by prior-
ities. The methods of an object given the priority to react
to time-critical events are assured to gain the processor im-
mediately when enabled by an input event, and to execute
without interruption. They can therefore be scheduled stat-
ically to assure that the response times declared for time-
critical tasks will be met.
The methods of an object given the lower priority of a

critical-rate task execute when no time-critical task is en-
abled. Execution of these methods can be interrupted to

execute a time-critical task. The O'Haskell object model
guarantees that these tasks cannot interfere in their access
to variables, as the state variables are strictly partitioned by
objects.
Communication between objects of di�erent priority is

handled by asynchronous method calls that pass parame-
ters as values, i.e. by copying the parameter to a register
or a temporarily allocated bu�er, rather than by passing
references. When a method executing at time-critical prior-
ity invokes a method of an object with critical-rate priority,
the invocation request the method to run after the higher
priority task has completed. In the reverse direction, when
a method of a critical-rate object invokes a method of a
higher priority, time-critical object, the method invocation
is an input event to the time-critical object. It immediately
preempts the rate-critical object to react to the event. In
this asymmetric message-passing protocal, locks are not re-
quired for synchronization and a static schedule guarantees
that data are never lost.

8. CONCLUSIONS
When the real time response requirements of an embed-

ded, reactive software system are explicitly speci�ed and
bounds on the execution times of its reactions are known,
a schedule for dispatching atomically executed reactions can
be calculated statically. We have prototyped a static schedul-
ing algorithm in Haskell and demonstrated its use with an
example. Advantages of this approach with respect to tech-
niques in common use are

� When a static schedule is based upon time constraints,
it assures that a speci�ed synchronization is achieved
between a software controller and the host system in
which it is embedded. When scheduling is based upon
priorities alone, the time of responses cannot be as-
sured.

� Statically scheduled reactions demand use of the pro-
cessor only when one or more input events have actu-
ally arrived, demanding responses. It accommodates
the service of events whose arrival times are relatively
unpredictable with less context-switching overhead than
does a uniformly clocked, event-loop design.

� When reactions are implemented as methods of single-
threaded objects, per-object sequentiality guarantees
that reactions do not interfere in their access of state
variables, while methods of separate objects can exe-
cute concurrently without interference. Thread schedul-
ing is replaced by static scheduling of reactions. In
contrast, if multiple threads are allowed to enter an
object, explicit monitors are needed to avoid possi-
ble interference of multiple threads accessing the state
variables of an object.

8.1 Related work
The research most closely related to the results presented

in this paper is the Rialto project [6], which supports pro-
gramming of time-critical tasks with declarations of time
constraints that are used by a static scheduling algorithm
to allocate time intervals in a CPU schedule. This interest-
ing project has slightly di�erent goals than ours. Its primary
emphasis is CPU reservations in an operating system, while
ours is the design of event-driven embedded systems.

46

Objective Caml [10] embeds and concurrency primitives
into a functional programming language, as does O'Haskell.
However, there are signi�cant di�erences. In Ocaml, state,
objects and concurrency are orthogonal aspects. They can
be used in conjunction or independently. In O'Haskell, these
language aspects have been integrated to provide a disci-
plined way to construct concurrent, imperative programs.
The O'Haskell discipline is well suited to the approach taken
in this paper to the design of reactive systems. A second dif-
ference between the two languages is that Ocaml is strict,
while expression evaluation in O'Haskell is lazy. That dif-
ference, however, is not critically important to the style of
programming discussed in this paper.

Acknowledgement: The author is indebted to his col-
leagues on the Timber project, Mark Jones, Johan Nord-
lander and Magnus Carlsson, for their encouragement, con-
tributions of suggestions and ideas, and especially for the
design and implementation of Hugs and O'Haskell, the ver-
satile software tools used in this research.

9. REFERENCES
[1] Gul A. Agha. Actors : A Model of Concurrent

Computation in Distributed Systems. MIT Press, 1987.

[2] G. Berry and G. Gonthier. The Esterel synchronous
programming language: Design, semantics,
implementation. Science Of Computer Programming,
19(2):87{152, 1992.

[3] F. Boussinot. Programming a reex game in Esterel
v3 2. Rapport de recherche 07/91, Centre de
Math�ematiques Appliqu�ees, Ecole des Mines de Paris,
Sophia-Antipolis, 1991.

[4] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous dataow programming language
Lustre. Proceedings of the IEEE, 79(9):1305{1320,
1991.

[5] David Harel. Statecharts: a visual formalism for
complex systems. Science of Computer Programming,
8:231{274, 1987.

[6] Michael B. Jones, Daniela Ro�su, and Marcel-C�at�alin
Ro�su. CPU reservationd and time constraints:
EÆcient, predictable scheduling of independent
activities. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles, pages 198{211.
ACM Press, October 1997.

[7] Richard B. Kieburtz. Reactive functional
programming. In D. Gries and W-P. de Roever,
editors, Programming Concepts and Methods
(PROCOMET98). Chapman-Hall, June 1998.

[8] C. L. Liu and J. W. Leyland. Scheduling algorithms
for multiprogramming in a hard, real-time
environment. Journal of the ACM, 20:46{61, 1973.

[9] Johan Nordlander. Reactive Objects and Functional
Programming. PhD thesis, Chalmers University of
Technology, 1999.

[10] Didier R
'emy and J�erôme Vouillon. Objective ML: an e�ective,
object-oriented extension to ML. Theory and Practice
of Object Systems, 4(1):27{50, 1998.

[11] Philip Wadler. How to replace failure by a list of
successes. In 2'nd International Conference on
Functional Programming Languages and Computer

Architecture, Nancy, France, September 1985.
Springer-Verlag.

47

APPENDIX B

Timber: A Programming Language for Real-Time Embedded Systems. Andrew P. Black,

Magnus Carlsson, Mark P. Jones, Richard Kieburtz and Johan Nordlander, technical report, April

2002.

48

http://www.cse.ogi.edu/PacSoft/projects/Timber/Timber-2002-04.pdf

Last Modified on 26 April 2002 at 15:51:50

r
Timber: A Programming Language fo
Real-Time Embedded Systems

Andrew P. Black, Magnus Carlsson, Mark P. Jones,
Richard Kieburtz and Johan Nordlander
timber@cse.ogi.edu

Department of Computer Science & Engineering
OGI School of Science & Engineering at OHSU
Beaverton, Oregon, USA
istic
here

intro-
that

con-
sion

of
ing
e dif-

sual
ce in
we
cili-
ddi-
ude
an-

tional

sing
ever,
t, that
d not
of a
In this paper we provide a detailed but informal survey of Timber and its character
features. A formal semantic treatment of the language will appear in other papers;
the exposition will instead be based on short code examples. However, we also
duce the semantic model that underlies one of Timber’s main contributions: the way
time is integrated into the language.

May of the features of Timber have been adopted from the reactive object-oriented
current functional language O’Haskell [15], which was in turn defined as an exten
to the purely functional language Haskell [12]. However, the Haskellian ancestry
Timber should not cause it to be ignored by the wider (non-functional) programm
language community. Indeed, Timber attempts to combine the best features of thre
ferent programming paradigms.

• Timber is animperative object-oriented language, offering state encapsulation,
objects with identity, extensible interface hierarchies with subtyping, and the u
complement of imperative commands such as loops and assignment. Inheritan
the style of,e.g.,Smalltalk, is not presently supported, but this is an area that
continue to study. The lack of inheritance is largely counterbalanced by rich fa
ties for parameterization over functions, methods, and templates for objects. A
tional Timber features not commonly found in object-oriented languages incl
parametric polymorphism, type inference, a straightforward concurrency sem
tics, and a powerful expression sub-language that permits unrestricted equa
reasoning.

• Timber can also be characterized as a strongly typedconcurrent language, based
on a monitor-like construct with implicit mutual exclusion, and a message-pas
metaphor offering both synchronous and asynchronous communication. How
unlike most concurrency models, a Timber process is represented as an objec
is, as the unit of state encapsulation. Moreover, execution of a process shoul
be regarded as continuous, but should instead be thought of as consisting
1

49

Haskell

es).

and
in the

nc-
or-
s in

ell do
ures:

by a
ams
nt for
state

r’s
syn-

onal
ram-

er is
ew
iously

ts is
,

iters,
sequence ofreactions to external events (made visible to the object as messag
These reactions always run to completion (i.e., they are non-blocking) and in
mutual exclusion. The execution order of reactions is determined by baselines
deadlines associated with these events. When we speak of reactive objects
sequel, this is what we mean.

• Timber is finally a purely functional language that supports stateful objects
through the use of monads. Timber allows recursive definitions, higher-order fu
tions, algebraic datatypes, pattern-matching, and Hindley/Milner-style polym
phism. Timber also supports type constructor classes and overloading a
Haskell, but these features are not central and the Timber extensions to Hask
not depend on them. To this base Timber conservatively adds two major feat
subtyping, and a monadic implementation of statefulreactive objects. The subtyp-
ing extension is defined for records as well as datatypes, and is supported
powerful partial type inference algorithm that preserves the types of all progr
typeable in Haskell. The monadic object extension is intended as a replaceme
Haskell’s standard IO model, and provides concurrent objects and assignable
variables while still maintaining referential transparency.

The exposition here largely follows the informal survey of O’Haskell in Nordlande
thesis [15]. Section 1 presents a brief overview of the base language Haskell and its
tax, before we introduce the major type system additions of Timber:recordsandsubtyp-
ing (Sections 2 and 3). In Section 4 our approach totype inferencein Timber is
presented. The rôle oftime is introduced in Section 6.Reactive objects, concurrency,
andencapsulated stateare discussed in Section 5. Section 7 presents some additi
syntactic features of Timber, before the paper ends with an example of Timber prog
ming (Section 8). The grammar of Timber appears in the Appendix.

1. Haskell

Haskell [1, 12] is a lazy, purely functional language, and the base upon which Timb
built. Readers familiar with Haskell may wish to skip this section; it introduces no n
material, and is present to make this paper accessible to those who have not prev
met the language, or who need a reminder of its features and syntax.

Functions Functions are the central concept in Haskell. Applying a function to its argumen
written as a simple juxtaposition; that is, iff is a function taking three integer arguments
then

f 7 13 0

is an expression denoting the result of evaluatingf applied to the arguments7, 13, and0.
If an argument itself is a non-atomic expression, parentheses must be used as delim
as in

f 7 (g 55) 0
2 Timber: A Programming Language for Real-Time Embedded Systems

50

Haskell

n
ore

bso-

t to

nt

of

o pre-
n

ts in
we
n-

ly
ger

so be

ns
Operators like+ (addition) and== (test for equality) are also functions, but are writte
between their first two arguments. An ordinary function application always binds m
tightly than an operator, thus

a b + c d

should actually be read as

(a b) + (c d)

Laziness The epithetlazymeans that the arguments to a function are evaluated only when a
lutely necessary. So, even if

g 55

is a non-terminating or erroneous computation (including, for example, an attemp
divide by zero), the computation

f 7 (g 55) 0

might succeed in Haskell, iff happens to be a function that ignores its second argume
whenever the first argument is7. This kind of flexibility can be very useful for encoding
and manipulating infinite data structures, and for building functions that play the rôle
control structures.

One of the consequences of laziness is that it can sometimes become quite hard t
dict when computation will actually take place, and calculating worst case executio
times is correspondingly difficult. Whether the costs of laziness outweigh the benefi
a language intended for real-time programming is an open question, and one that
will continue to examine experimentally. It is important to note that none of the exte
sions to Haskell that we put forward in Timber relies on laziness. Thus it is perfect
reasonable to judge the merits of our extensions as if they were intended for an ea
programming language, and it would be perfectly possible to give Timber an eager
semantics without major surgery.

Function definitions Functions can be defined by equations on the top-level of a program. They can al
defined locally within an expression. The following fragment defines the functionf at
the top-level; the functionsq is defined locally within the body off.

f x y z = let sq i = i ∗ i
in sq x ∗ sq y ∗ sq z

Note that the symbol= denotesdefinitional equality in Haskell (i.e.,= is neither an
assignment nor an equality test). Local definition of a function within other definitio
is also possible, as in

f x y z = sq x ∗ sq y ∗ sq z where
sq v = v ∗ v
Timber: A Programming Language for Real-Time Embedded Systems 3

51

Haskell

ents.

clare
kell
n the
ri-

,

more

esult

 is
Anonymous functions can be introduced with the so-calledlambda-expression, written
using the symbols\ …-> in lieu of λ…. So

\ x y z -> x*y*z

is an expression whose value is the function that multiplies together its three argum
An identical function is defined and namedproduct by the definition

product x y z = x*y*z

The scope of a name can be limited by alet expression, so

let product x y z = x*y*z in product

has as its value the same anonymous function as the original lambda expression.

Type inference When introducing a new variable, the programmer does not in general have to de
its type. Instead, the Hindley-Milner-style type inference algorithm employed in Has
is able to discover the most general type for each expression. This often results i
inference of apolymorphic type, i.e.,a type expression that includes one or more va
ables standing for arbitrary types.

The simplest example of a polymorphic type is that inferred for the identity function

id x = x

The most general type that can be ascribed to the functionid is a -> a: this type is poly-
morphic, sincea is treated as if it were universally quantified, that is, “for all typesa”.
However, the programmer can also use an explicit type annotation to indicate a
specific type, as in

iid :: Int -> Int
iid x = x

Partial application A function like f above that takes three integer arguments and delivers an integer r
has the type

Int -> Int -> Int -> Int

Arrow associates to the right, so this meansInt -> (Int -> (Int -> Int))

Hence such a function need not always be supplied with exactly three arguments.
Instead, functions can bepartially applied; a function applied to fewer than its full com-
plement of arguments is treated as denoting an anonymous function, which in turn
applicable to the missing arguments. This means that(f 7) is a valid expression of type
Int -> Int -> Int, and that(f 7 13) denotes a function of typeInt -> Int. Note that this treat-
ment is consistent with parsing an expression likef 7 13 0 as(((f 7) 13) 0).
4 Timber: A Programming Language for Real-Time Embedded Systems

52

Haskell

his

a
sive
ntifi-

e
illus-

pre-
list is
Pattern-matching Haskell functions are often defined by a sequence of equations thatpattern-matchon
their arguments, as in the following example:

fac 0 = 1
fac n = n * fac (n-1)

which is equivalent to the more conventional definition

fac n = if n== 0 then 1 else n * fac (n-1)

Pattern-matching using Booleanguardexpressions is also available, although this form
is a bit contrived in this simple example.

fac n | n== 0 = 1
| otherwise = n * fac (n-1)

Moreover, explicitcase expressions are also available in Haskell, as shown in t
fourth variant of the factorial function:

fac n = case n of
0 -> 1
m -> m ∗ fac (m-1)

Algebraic datatypes User-defined types (calledalgebraic datatypesin Haskell) can be defined using dat
definitions, which define a kind of labeled union type with name equality and recur
scope. Here is an example of a data definition for binary trees: it declares three ide
ers,BTree, Leaf andNode.

data BTree a = Leaf a
| Node (BTree a) (BTree a)

The type argumenta is used to make theBTree polymorphic in the contents of its
leaves; thus a binary tree of integers has the typeBTree Int. The identifiersLeaf and
Node are called theconstructorsof the datatype. Constructors, which have global scop
in Haskell, can be used both as functions and in patterns, as the following example
trates:

swap (Leaf a) = Leaf a
swap (Node l r) = Node (swap r) (swap l)

This function (of typeBTree a -> BTree a) takes any binary tree and returns a mirror
image of the tree obtained by recursively swapping its left and right branches.

Predefined types In addition to the integers, Haskell’s primitive types include characters (Char) as well as
floating-point numbers (Float andDouble). The type of Boolean values (Bool) is pre-
defined, but is an ordinary algebraic datatype. Lists and tuples are also essentially
defined datatypes, but they are supported by some special syntax. The empty
Timber: A Programming Language for Real-Time Embedded Systems 5

53

Haskell

of

-

can

hich

be
f an
teful
-

take
tion.

nt of
written [], and a non-empty list with headx and tailxs is writtenx:xs. A list known in its
entirety can be expressed as[x1,x2,x3], or equivalentlyx1:x2:x3:[]. Moreover, a pair of
elementsa andb is written(a,b), and a triple also containingc is written(a,b,c), etc.

As an illustration of these issues, here is a function which “zips” two lists into a list
pairs:

zip (a:as) (b:bs) = (a,b) : zip as bs
zip _ _ = [] .

Note that the order of these equations is significant.

The names of the types of lists and tuples are analogous to the terms:[a] is the type of
lists containing elements of typea, and(a,b) denotes the type of pairs formed by ele
ments of typesa andb. Thus the type of the functionzip above is[a] -> [b] -> [(a,b)].
There is also degenerate tuple type(), calledunit, which contains only the single ele-
ment(), also called unit.

Strings are just lists of characters in Haskell, although conventional string syntax
also be used for constant strings, with"abc" being equivalent to[’a’,’b’,’c’]. The type
nameString is just atype abbreviation, defined as:

type String = [Char]

String concatenation is an instance of general list concatenation in Haskell, for w
there exists a standard operator++, defined as

[] ++ bs = bs
(a:as) ++ bs = a : (as ++ bs)

Haskell also provides a primitive typeArray, with an indexing operator! and an
“update” operator//. However, this type suffers from the fact that updates must
implemented in a purely functional way, which often means creating a fresh copy o
array each time it is modified. We will see later in this paper how monads and sta
objects enable us to support theArray type in a more intuitive, as well as a more effi
cient, manner.

Higher-order functions Functions are first-class values in Haskell, so it is quite common for a function to
another function as a parameter; such a function is known as a higher-order func
map is a typical example of a higher-order function;map takes two arguments, a func-
tion and a list, and returns a new list created by applying the function to each eleme
the old list.map is defined as follows:

map f [] = []
map f (x:xs) = f x : map f x

The fact thatmap is higher-order is exposed in its type,

map :: (a -> b) -> [a] -> [b]
6 Timber: A Programming Language for Real-Time Embedded Systems

54

Haskell

he

the
mit-
ue to
ver-

that

le

er
ach
us
w
ends
egory
t
ches
by an
where the parentheses are essential. As an example of howmap can be used, we con-
struct an upper-casing function for strings by defining

upCase = map toUpper

wheretoUpper :: Char -> Char is a predefined function that capitalizes characters. T
type ofupCase must accordingly be

upCase :: [Char] -> [Char]

or, equivalently,

upCase :: String -> String .

Layout Haskell makes extensive use of indentation — two dimensional layout of text on
page — to convey information that would otherwise have to be supplied using deli
ers. We have been using this convention in the foregoing examples, and will contin
do so. The intended meaning should be obvious. It is occasionally convenient to o
ride the layout rules with a more explicit syntax, so it may be good to keep in mind
the two-dimensional code fragment

let f x y = e1
g i j = e2

in g

is actually a syntactic shorthand for

let { f x y = e1 ; g i j = e2 } in g .

Informally stated, the braces and semicolons are inserted as follows. The layout ru
takes effect whenever the open brace is omitted after certain keywords, such aswhere ,
let , do , record andof . When this happens, the indentation of the next lexeme (wheth
or not on a new line) is remembered and the omitted open brace is inserted. For e
subsequent line, if it contains only whitespace or is indented more, then the previo
item is continued (nothing is inserted); if it is indented the same amount, then a ne
item begins (a semicolon is inserted); and if it is indented less, then the layout list
(a close brace is inserted). A close brace is also inserted whenever the syntactic cat
containing the layout list ends; that is, if an illegal lexeme is encountered at a poin
where a close brace would be legal, a close brace is inserted. The layout rule mat
only those open braces that it has inserted; an explicit open brace must be matched
explicit close brace.
Timber: A Programming Language for Real-Time Embedded Systems 7

55

Records

lass
osen
al is a
cords

and
record
lection
type

cords
ent
ord
mes.
ment,

type
two-

ill
our

h
f one

e set

rs
2. Records

The first Timber extension beyond Haskell is a system for programming with first-c
records. Although Haskell already provides some support for records, we have ch
to replace this feature with the present system, partly because the Haskell propos
somewhat ad-hoc adaptation of the datatype syntax, and partly because Haskell re
do not fit very well with the subtyping extension that is described in Section 3.

The distinguishing feature of Timber records is that the treatment of records
datatypes is perfectly symmetric; that is, there is a close correspondence between
selectors and datatype constructors, between record construction and datatype se
(i.e., pattern-matching over constructors), and between the corresponding forms of
extension, which yield subtypes for records and supertypes for datatypes.

Consequently, we treatboth record selectorsand datatype constructors asglobal con-
stants. This is the common choice where datatypes are concerned, but not so for re
(see,e.g.,references [14] and [8]). Nevertheless, we think that a symmetric treatm
has some interesting merits in itself, and that the ability to form hierarchies of rec
types alleviates most of the problems of having a common scope for all selector na
We also note that overloaded names in Haskell are given very much the same treat
without creating many problems in practice.

A record type is defined in Timber by a global declaration analogous to the data
declaration described previously. The following example defines a record type for
dimensional points, with two selector identifiers of typeFloat.

record Point where x,y :: Float

The record keyword is also used in the term syntax for record construction. We w
generally rely on Haskell’s layout rule (see “Layout” on page 7) to avoid cluttering
record expressions with braces, as in the following example.

origin = record
x = 0.0
y = 0.0

Since the selector identifiersx andy are global, there is no need to indicate to whic
record type a record term belongs; the compiler can deduce that origin is a Point. I
wishes to make this clear to the human reader, one can explicitly write

origin:: Point
origin = record

x = 0.0
y = 0.0

but this is entirely redundant. It is a static error to construct a record term where th
of selector equations is not exhaustive for some record type.

Record selection is performed in the conventional way by means of thedot-syntax.
(Timber also has an operator. used to denote function composition; record selecto
8 Timber: A Programming Language for Real-Time Embedded Systems

56

Records

rator

, by

ollow-
uality

sions
n
so

ned

r of
should immediately follow the dot, while the operator. must be followed by some
amount of white space). Record selection binds more tightly than function and ope
application, as the following example indicates.

dist p = sqrt (sq p.x + sq p.y) where
sq i = i ∗ i

A record selector can moreover be turned into an ordinary prefix function if needed
enclosing it between(. and), as in

xs = map (.x) some_list_of_points

Just as algebraic datatypes may take type arguments, so may record types. The f
ing example shows a record type that captures the signatures of the standard eq

operators.†

record Eq a where
eq :: a -> a -> Bool
ne :: a -> a -> Bool

This defines a record type with two selectors namedeq andne. The types of these selec-
tors are botha -> a -> Bool, where the typea is a parameter to Eq.

A record term of typeEq Point is defined below.

pdict = record
eq = eq
ne a b = not (eq a b)

where eq a b = a.x==b.x && a.y==b.y

This example also illustrates three minor points about records: (1) record expres
are not recursive, (2) record selectors possess their own namespace (the equatioeq =
eq above isnot recursive), and (3) selectors may be implemented as functions if
desired.

†. Strictly speaking, this record type is not legal since its name coincides with that of a predefi
Haskelltype class. Type classes form the basis of theoverloading system of Haskell, whose
ins and outs are beyond the scope of this survey. The nameEq has a deliberate purpose, though
— it connects the example to a known Haskell concept, and it indicates the possibility of
reducing the number of constructs in Timber by eliminating type class declarations in favou
record types.
Timber: A Programming Language for Real-Time Embedded Systems 9

57

Subtyping

ames
stion

declar-
btyp-
pe

f

od-

-

3. Subtyping

The subtyping system of Timber is based onname inequality. This means that a possible
subtype relationship between (say) two record types is determined solely by the n
of the involved types, and not by consideration to whether the record types in que
might have matching substructure. Name inequality is a generalization of thename
equality principle used in Haskell for determining whether two types are equal.

The subtype relation between user-supplied types is induced as a consequence of
ing a new type as an extension of a previously defined type. This makes record su
ing in Timber look quite similar to interface extension in Java, as the following ty
declaration exemplifies:

record CPoint < Point where
color :: Color

This syntax both introduces the record typeCPoint and declares it to be an extension o
the existing typePoint. The extension is the addition of the selectorcolor. As a conse-
quence of this definition,CPoint is a subtype ofPoint, written CPoint < Point. We call
CPoint < Point a subtyping rule. The meaning of this definition is that typeCPoint pos-
sess the selectorsx andy in addition to its own selectorcolor.

The structure ofCPoint must be observed when constructingCPoint terms, as is done in
the following function.

addColor :: Point -> CPoint

addColor p = record x = p.x
y = p.y
color = Black

cpt = addColor origin

HereaddColor is defined to be a function that convertsPoints to CPoints by coloring
them black. Notice that leaving out the equationcolor = Black would make the defini-
tion invalid, since the function result would then be a value of typePoint instead of
CPoint, contradicting the type definition.

Subtyping can also be defined for algebraic datatypes. Consider the following type m
elling the colors black and white.

data BW = Black | White

This type can now be used as the basis for an extended color type:

data Color > BW =
Red | Orange | Yellow | Green | Blue | Violet

Since its set of possible values is larger, the new typeColor defined here must necessar
ily be a supertypeof BW (hence we use the symbol> instead of< when extending a
10 Timber: A Programming Language for Real-Time Embedded Systems

58

Subtyping

y
e type.

art to
set of
pro-
pat-

ated

e a
nding

s

m-

ter-
datatype). The subtype rule introduced by this declaration is accordinglyBW < Color,
and typeColor possess all of the constructors of its base typeBW, in addition to those
explicitly mentioned forColor. This is analogous to situation for record types formed b
extension, where the extended type has all of the destructors (selectors) of its bas

Timber allows pattern-matching to be incomplete, so there is no datatype counterp
the static exhaustiveness requirement that exists for record types. However, the
constructors associated with each datatype still influences the meaning of Timber
grams. This is because the type inference algorithm approximates the domain of a
tern-matching construct by the smallest type that contains all of the enumer
constructors. The functionsf andg, defined as

f Black = 0
f _ = 1

g Black = 0
g Red = 1
g _ = 2

illustrate this point. The domain off is inferred to beBW, while the domain ofg is
inferred to beColor.

Polymorphic subtype
rules

Subtype definitions may be polymorphic. Consider the following example wher
record type capturing the standard set of comparison operators is formed by exte
the typeEq defined above.

record Ord a < Eq a where
lt, le, ge, gt :: a -> a -> Bool

The subtype rule induced by the definition ofOrd states that for all typesa, a value of
typeOrd a also supports the operations ofEq a. Ord a must also support the operation
lt, le, ge andgt

Polymorphic subtyping works just as well for datatypes. Consider the following exa
ple, which provides an alternative definition of the standard Haskell typeEither.

data Left a = L a

data Right a = R a

data Either a b > Left a, Right b

The first declaration, actually defines both a new datatypeLeft a and a new constructor
for values of that type, calledL. The declaration ofRight is parallel.

The last declaration is an example of type extension with multiple basetypes. Like in
face extension in Java, this declaration introducestwo polymorphic subtype rules; one
that says that for alla andb, a value inLeft a also belongs toEither a b, and one that
says that for alla andb, a value in typeRight b also belongs toEither a b. The declara-
Timber: A Programming Language for Real-Time Embedded Systems 11

59

Subtyping

truc-

and

mple,

y
in its
ese

er

e

so

e

t
sical

and
tion of Either also shows that a datatype declaration need not declare any new cons
tors.

Depth subtyping Subtyping is a reflexive and transitive relation. This, any type is a subtype of itself,
S < T andT < U impliesS < U for all typesS, T, andU. The fact that type constructors
may be parameterized makes subtyping a bit more complicated, though. For exa
under what circumstances should we be able to conclude thatEq S is a subtype ofEq
T?

Timber incorporates a flexible rule that allowsdepth subtypingwithin a type constructor
application, by taking thevarianceof a type constructor’s parameters into account. B
variance we mean the rôle that a type variable has in the set of type expressions
scope—does it occur in a function argument position, in a result position, in both th
positions, or perhaps not at all?

In the definition of the record typeEq above

record Eq a where
eq :: a -> a -> Bool
ne :: a -> a -> Bool

all occurrences of the parametera are in an argument position. For these cases Timb
prescribescontravariantsubtyping, which means thatEq S is a subtype ofEq T only if
T is a subtype ofS. Thus we have thatEq Point is a subtype ofEq CPoint. This means
that an equality test developed forPoints can also be applied toCPoints, e.g., it can be
used to partition colored points into equivalence classes.

The parameter of the datatypeLeft, on the other hand, occurs only as a top-level typ
expression (that is, in a result position). In this case subtyping iscovariant, which means
for example thatLeft CPoint is a subtype ofLeft Point. As an example ofinvariant sub-
typing, consider the record type

record Box a where
in :: a -> Box a
out :: a

Here the type parametera plays the rôle of a function argument as well as a result,
both the co- and contravariant rules apply at the same time. The net result is thatBox S
is a subtype ofBox T only if S andT are identical types. There is also the unlikely cas
where a parameter is not used at all in the definition of a record or datatype:

data Contrived a = Unit

Clearly a value of typeContrived S also has the typeContrived T for any choice ofS
andT, thus depth subtyping for thisnonvarianttype constructor can be allowed withou
any further preconditions. The motivation behind these rules is of course the clas
rule for subtyping of function types, which states thatS -> T is a subtype ofS' -> T'
only if S' is a subtype ofS, andT is a subtype ofT' [7]. Timber naturally supports this
rule, as well as covariant subtyping for the built-in aggregate types: lists, tuples,
12 Timber: A Programming Language for Real-Time Embedded Systems

60

Automatic type inference

duce
ous.

e or
some

be

by
me

ple

e of

ible

a

arrays. Depth subtyping may be transitively combined with declared subtypes to de
subtype relationships that are intuitively correct, but perhaps not immediately obvi
Some illustrative examples follow.

Restrictions on subtyping The general rule when defining types by subtyping is that the newly defined subtyp
supertype may be any type expression that is not a variable. There are, however,
restrictions, for example, it is illegal to definerecord S a < Bool, because the supertype
is not a record type. We will not dwell on the restrictions here; more information can
found in reference [15].

4. Automatic type inference

In a polymorphic language, expressions have several types. Aprincipal typeis a type
sufficiently general for all of the other types to be deducible from it.

In Haskell, the polymorphic function

twice f x = f (f x)

has the principal type

(a -> a) -> a -> a

from which every other valid type fortwice, e.g., (Point -> Point) -> Point -> Point, can
be obtained as a substitution instance.

However, it is well known that polymorphic subtyping systems need types qualified
subtype constraintsin order to preserve a notion of principal types. To see this, assu
that we allow subtyping, and thatCPoint < Point. Now twice can also have the type

(Point -> CPoint) -> Point -> CPoint

which is not an instance of the principal Haskell type. In fact, there can be no sim
type for twice that has both(Point -> Point) -> Point -> Point and(Point -> CPoint) ->
Point -> CPoint as substitution instances, since the greatest common anti-instanc
these types,(a -> b) -> a -> b, is not a valid type fortwice.

Thus, to obtain a notion of principality in this case, we must restrict the poss
instances ofa andb to those types that allow a subtyping step fromb to a; that is, we
must associate the subtype constraintb < a with the typing oftwice. In Timber, subtype

Relation: Interpretation:
Left CPoint < Either Point Int If either some kind of point or some integer is

expected, a colored point will certainly do.
Ord Point < Eq CPoint If an equality test for colored points is expected,

complete set of comparison operations for
arbitrary points definitely meets the goal.
Timber: A Programming Language for Real-Time Embedded Systems 13

61

Automatic type inference

syn-
t, and
,

t
more

type
ell,
that
rob-
tion

ploys
able

only
hoice

ble
ing
pro-
con-
t the

ore
constraints are attached to types using the “=>” symbol†, so the principal type fortwice
can be written

(b < a) => (a -> b) -> a -> b .

This type has two major drawbacks compared to the principal Haskell type: (1) it is
tactically longer than most of its useful instances because of the subtype constrain
(2) it is no longer unique modulo renaming, since it can be shown that, for example

(b < a, c < a, b < d) => (a -> b) -> c -> d

is also a principal type fortwice. In this simple example the added complexity tha
results from these drawbacks is of course manageable, but even just slightly
involved examples soon get out of hand. The problem is that, in effect,every application
nodein the abstract syntax tree can give rise to a new type variable and a new sub
constraint. Known complete inference algorithms tend to illustrate this point very w
and even though algorithms for simplifying the type constraints have been proposed
alleviate the problem to some extent, the general subtype constraint simplification p
lem is at least NP-hard. It is also an inevitable fact that no conservative simplifica
strategy can ever give us back the attractive type fortwice that we have in Haskell.

For these reasons, Timber relinquishes the goal of complete type inference, and em
a partial type inference algorithm that gives up generality to gain consistently read
output. The basic idea is to let functions liketwice retain their original Haskell type,
and, in the spirit of monomorphic object-oriented languages, infer subtyping steps
when both the inferred and the expected type of an expression are known. This c
can be justified on the grounds that(a -> a) -> a -> a is still likely to be a sufficiently
general type fortwice in most situations, and that the benefit of consistently reada
output from the inference algorithm will arguably outweigh the inconvenience of hav
to supply a type annotation when this is not the case. We certainly do not want to
hibit exploration of the more elaborate areas of polymorphic subtyping that need
straints, but considering the cost involved, we think that it is reasonable to expec
programmer to supply the type information in these cases.

As an example of where the lack of inferred subtype constraints might seem m
unfortunate than in the typing oftwice, consider the function

min x y = if less x y then x else y

which, assumingless is a relation on typePoint, will be assigned the type

Point -> Point -> Point

by Timber’s inference algorithm. A more useful choice would probably have been

(a < Point) => a -> a -> a

†. The syntax is inspired by the way that type classes are expressed in Haskell.
14 Timber: A Programming Language for Real-Time Embedded Systems

62

Automatic type inference

er by

ary
the

hen

the

, even

le to
to a
the

ts that
ccur
our
va-
r very

con-
but, as we have indicated, such a constrained type can only be attained in Timb
means of an explicit type annotation. On the other hand, note that theprincipal type for
min,

(a < Point, b < Point, a < c, b < c) => a -> b -> c

is still more complicated, and unnecessarily so in most realistic contexts.

An informal characterization of our inference algorithm is that it improves on ordin
polymorphic type inference by allowing subtyping under function application when
types are known, as in

addColor cpt

In addition, the algorithm computes least upper bounds for instantiation variables w
required, so that,e.g., the list

[cpt, pt]

will receive the type

[Point]

Greatest lower bounds for function arguments will also be found, resulting in
inferred type

CPoint -> (Int,Bool)

for the term

\ p -> (p.x, p.color == Black) .

Notice, though, that the algorithm assigns constraint-free types toall subterms of an
expression, hence a compound expression might receive a less general type
though its principal type has no constraints. One example of this is

let twice f x = f (f x) in twice addColor pt

which is assigned the typePoint, not the principal typeCPoint.

Unfortunately, a declarative specification of the set of programs that are amenab
this kind of partial type inference is still an open problem. Completeness relative
system that lacks constraints is also not a realistic property to strive for, due to
absence of principal types in such a system. However, experience strongly sugges
the algorithm is able to find solutions to most constraint-free typing problems that o
in practice—in fact, an example of where it mistakenly fails has yet to be found in
experience with O’Haskell and Timber programming. Moreover, the algorithm is pro
bly complete with respect to the Haskell type system, and hence possesses anothe
important property: programs typeable in Haskell retain their inferred types when
Timber: A Programming Language for Real-Time Embedded Systems 15

63

Reactive objects

pt all

any
-
mer.
y step

rely
this

skell
ot
hesis

[16]

one
ce

-
t (the
ssage

ssage
and the

Con-
r
.

bjects.
sidered as Timber programs. Additionally, the algorithm can also be shown to acce
programs typeable in the core type system of Java (see section 5.3 of [15]).

5. Reactive objects

The dynamic behavior of a Timber program is the composition of the behavior of m
state-encapsulating, time sensitivereactive objects executing concurrently. In this sec
tion we will survey this dynamic part of the language as it is seen by the program
The number of new concepts introduced here is quite large, so we proceed step b
and ask the reader to be patient while the structure of the language unfolds.

Some of the language features will initially appear to be incompatible with a pu
functional language. However, it is in fact the case that all constructs introduced in
section are syntactically transformable into a language consisting of only the Ha
kernel and a set of primitive monadic constants. This “naked” view of Timber will n
be pursued here; the interested reader is referred to chapter 6 of Nordlander’s T
[15].

Objects and methods Objects are created by executing atemplate construct, which defines theinitial stateof
an object together with itscommunication interface. Unlike Smalltalk or Java, there is
no notion of class; in this way Timber is similar to classless languages like Emerald
and Self [17].

The communication interface can be a value of any type, but it will usually contain
or moremethods. (It can be useful to put other things in the communications interfa
too, as we will see in some of the examples.) Methods allow the object to react tomes-
sage sends. We use the termmessage sendin its usual sense in object-oriented program
ming: a message send is directed from one object (the sender) to another objec
receiver); in response, the receiver first selects and then executes a method. Me
send is sometimes called method invocation or even method call, but the term me
send is preferred because it emphasises that the coupling between the message
method occurs in the receiving object.

A method takes one of two forms: an asynchronousaction or a synchronousrequest .
An action lets the sender continue immediately, and thus introduces concurrency.
sequently, actions have no result. A synchronousrequest causes the sender to wait fo
the method to complete, but allows a result value to be passed back to the sender

The body of a method, finally, is a sequence ofcommands, which can basically do three
things: update the local state, create new objects, and send messages to other o
The following template defines a simple counter object:
16 Timber: A Programming Language for Real-Time Embedded Systems

64

Reactive objects

ari-
. The

ace
on-
r

xpres-
l
is-

ing an

r-

pe

aria-

ever
t the
counter = template
val := 0

in record
inc =

action val := val + 1
read =

request return val

Executing thistemplate command creates a new counter object with its own state v
ableval, and returns an interface through which this new object can be accessed
interface is a record containing two methods: an asynchronousaction inc, and a syn-
chronousrequest read. Sending the messageinc to this interface will cause theaction
val := val + 1 to be executed, with the effect that the counter object behind the interf
will update its state, concurrently with the continued execution of the sender. In c
trast, sending the messageread will essentially perform a rendezvous with the counte
object, and return its current value to the sender.

Procedures and
commands

Actions, requests and templates are all expressions that denote commands; such e
sions have a type in amonadcalledCmd. A monad is a structure that allows us to dea
with effect-full computations in a mathematically consistent way by formalizing the d
tinction betweenpure computations (those that simply compute values), andimpure
computations, which may also have effects, such as changing a state or access
external device.

Cmd is actually a type constructor:Cmd a denotes the type of commands that may pe
form effects before returning a value of typea. If Counter is a record type defined as

record Counter where
inc :: Cmd ()
read :: Cmd Int

then the type of the example shown above is given by

counter :: Cmd Counter

This says thatcounter is a command that, when executed, will return a value of ty
Counter.

The result returned from the execution of a monadic command may be bound to a v
ble by means of thegenerator notation. For example

do c <- counter
...

means that the commandcounter is executed (i.e., a counter object is created), andc is
bound to the value returned—the interface of the new counter object.

Note that a generator expression cannot be the final command in ado -construct. There
would be no point in using it in such a position, because the bound variable could n
be referenced. Executing a command and discarding the result is written withou
Timber: A Programming Language for Real-Time Embedded Systems 17

65

Reactive objects

the

at is,

us,

g its

type

imply

e
his is
left-arrow. For example, the result of invoking an asynchronous method is always
uninteresting value(), so the usual way of incrementing counterc is

do c <- counter
c.inc

This do -construct is by itself an expression: it represents a command sequence, th
an anonymous procedure, likeprogn in Lisp or like a block in Smalltalk.When this
command sequence is executed,it executes its component commands in sequence. Th
the commandcounter is executed first. This in turn executes thetemplate expression
shown on page 17, which has the effect of creating a counter object and returnin
interface record, which is bound toc. Next, the commandc.inc is executed, which sends
the messageinc to the counter object. The result is().

The value returned by a procedure is the value returned by its last command, so the
of the above expression isCmd ().

Since theread method ofc is a synchronousrequest that returns anInt, we can write

do c <- counter
c.inc
c.read

and obtain a procedure with the typeCmd Int.

Just as for other commands, the result of executing theread method can be captured by
means of the generator notation:

do c <- counter
c.inc
v <- c.read
return v

This procedure is actually equivalent to the previous one. The identifierreturn denotes
the built-in command that, when executed, produces a result value (in this case s
v) without performing any effects. Unlike most imperative languages, however,return is
not a branching construct in Timber—areturn in the middle of a command sequenc
means only that a command without effect is executed and its result is discarded. T
pointless, but not incorrect. For example

do ...
return (v+1)
return v

is simply identical to

do ...
return v

A procedure constructed withdo can be named just like any other expression:
18 Timber: A Programming Language for Real-Time Embedded Systems

66

Reactive objects

unter
n be

be
this
can
r

ele-

e
n the
later

y
t

s that
of the
hus,

bject,
s of
testCounter = do c <- counter
c.inc
c.read

testCounter is thus the name of a simple procedure that,when executed,creates a new
counter object and returns its value after it has been incremented once. The co
itself is then simply forgotten, which means that space used in its implementation ca
reclaimed by the garbage collector.

A very useful procedure with a predefined name is

done = do return ()

which plays the rôle of anull command in Timber.

Notice the difference between the equals sign= and the generator arrow<-.

• The symbol = denotes definitional equality: it defines the name on the left to
equivalent to the expression on the right, which may be a command (as in
example) or a simple value, such as a factorial function defined on page 5; =
appear at the top level, or inlet andwhere clauses. Since a definition can neve
have any effect, the order of execution of a set of definitions made with = is irr
vant, and mutual recursion is allowed.

• In contrast, the generator arrow<- can appear only inside ado -construct. The right
hand side must be a command, that is, it must have the typeCmd a for some value
type a. The effect is toexecutethe command, and to bind the resulting value to th
identifier on the left hand side. A sequence of generator bindings is executed i
order written, and the values bound by the earlier bindings can be used in the
expressions, but not vice-versa.

Notice that the definition ofcounter in “Objects and methods” on page 16 does not b
itself create an object. What it does is definecounter to be a command. If and when tha
command is executed, an object will be created; ifcounter is executed three times, three
new counter objects are created. Thus, the commandcounter is analogous to the expres-
sionCounterClass new in Smalltalk ornew Counter() in Java: it is the means to make
a new object.

Assignable local state The method-forming constructsaction andrequest are syntactically similar to proce-
dures, but with different operational behaviors. Whereas calling a procedure mean
its commands are executed by the caller, sending a message triggers execution
commands that make up the corresponding method within the receiving object. T
methods have no meaning other than within an object, and theaction andrequest key-
words are accordingly not available outside thetemplate syntax.

In actions and requests, as well as in procedures that occur within the scope of an o
two additional forms of commands are available: commands that obtain the value
state variables (for example the commandreturn val in the counter object), and com-
mands that assign new values to these variables (e.g.val := val + 1).
Timber: A Programming Language for Real-Time Embedded Systems 19

67

Reactive objects

man-

mple

f

e not

ome
andi-

This

g a

tion
, as

are

this
o the
g in

c of
The use of state variables is restricted in order to preserve the purely functional se
tics of expression evaluation.

• First, references to state variables may occur only within commands. For exa

template
x := 1

in x

is statically illegal, since the state variablex is not visible outside the commands o
a method or a procedure (i.e., it can only be used inside ado , action or request).

• Secondly, there are no aliases in Timber, which means that state variables ar
first-class values. Thus the procedure declaration

someProc r = do r := 1

is illegal even ifsomeProc is applied only to integer state variables, becauser is
syntactically a parameter, not a state variable. Parameterization over s
unknown state can instead be achieved in Timber by turning the parameter c
dates into full-fledged objects.

• Thirdly, the scope of a state variable does not extend into nested objects.
makes the following example ill-formed:

template
x := 1

in
template

y := 2
in

do x := 0

• Fourthly, there is a restriction that prevents other local bindings from shadowin
state variable. An expression like the following is thus disallowed:

template
x := 1

in \ x -> ...

While not necessary for preserving the purity of the language, this last restric
has the merit of making the question of assignability a simple lexical matter
well as emphasizing the special status that state variables enjoy in Timber.

A word about overloading Sequencing by means of thedo -construct, and command injection (viareturn), are not
limited to theCmd monad. Indeed, just as in Haskell, these fundamental operations
overloadedand available for any type constructor that is an instance of thetype class
Monad [9, 11]. Type classes and the overloading system will not be covered in
paper, partly because this feature constitutes a virtually orthogonal complement t
subtyping system of Timber, and partly because we do not capitalize on overloadin
any essential way. In particular, monadic programming in general will not be a topi
this paper.
20 Timber: A Programming Language for Real-Time Embedded Systems

68

Reactive objects

over-
loyed
ur

ntui-
tem

lts
-
nd is

type;
of the

ype

.
fect,
en a

within
onsti-
at pro-
ject

. It is
e-use
erved
Nevertheless, we are about to introduce one more monad that is related toCmd by
means of subtyping. We will therefore take the liberty of reusingreturn and thedo -syn-
tax for this new type constructor, even though strictly speaking this means that the
loading system must come into play behind the scenes. The same trick is also emp
for the equality operator== in a few places. However, the uses of overloading that occ
in this paper are all statically resolvable, so our naive presentation of the matter is i
tively quite correct. We feel that glossing over Haskell’s most conspicuous type sys
feature in this way avoids more confusion than it creates.

The O monad While all commands are members of the monadCmd, commands that refer to or assign
to the local state of an object belong to a richer monadO s, wheres is the type of the
local state. Accordingly,O s a is the type of state-sensitive commands that return resu
of typea. An assignment command always returns(), whereas a state-referencing com
mand can return any type. Any procedure that contains a state-referencing comma
itself a state-referencing command, and will therefore have a typeO s.

The type of the local state of an object with more than one state variable is a tuple
there is no information about the names of the state variables encoded in the type
state. For example, consider the definitions

a = template
x := 1
f := True

in ...

and

b = template
count := 0
enable := False

in ...

The commandsa andb, when executed, both generate objects with local states of t
(Int,Bool).

Procedures defined within an object areparametricin the state on which they operate
The state of the object within which the procedure is eventually executed is, in ef
provided to it as an implicit parameter. There exists no connection at runtime betwe
value of someO type (a procedureor a method) and the object in which its definition is
syntactically nested.

What this means is that, as long as the state types match, a procedure declared
one object can be used as a local procedure within another object. This does not c
tute a loophole in Timber’s object encapsulation, because the state accessed by th
cedure will be the state of the caller. It remains true that the only way in which an ob
may affect the state of another object is by sending a message tothat object. However,
the ability to export procedures provides a way of sharing code between templates
very much like inheritance in class-based languages, which permits one class to r
the code originally defined in another. In such a language, encapsulation is pres
Timber: A Programming Language for Real-Time Embedded Systems 21

69

Reactive objects

cuting

ether
two

sibly
ation
fail-
pro-

ntity
ulation

r-
f

-
jects
value

ber

the
because the state on which the re-used code operates that of the currently exe
object.

Object Identity A sometimes controversial issue in the design of object-oriented languages is wh
clients should be able to compare two object references for identity. That is, given
identifiersa andb that name objects, can a client ask whethera andb are in fact the
same object?

Allowing such an identity test breaches encapsulation, because whether two pos
distinct interfaces are actually implemented by the same object is an implement
decision that may be changed and which should accordingly be hidden. However,
ing to provide an efficient identity test can impose an unreasonable burden on the
grammer. For a more complete discussion of these issues, see reference [6].

Timber makes the compromise of letting the programmer decide whether or not ide
comparison shall be possible. Objects themselves cannot be compared, so encaps
is preserved. However, Timber provides a special variableself, which is implicitly in
scope inside everytemplate expression, and which may not be shadowed. All occu
rences ofself have typeRef s, wheres is the type of the current local state. The value o
self uniquely identifies a particular object at runtime.

It should be noted that the variableself in Timber has nothing to do with theinterfaceof
an object (in contrast to, for example,this in C++ and Java). This is a natural conse
quence of the fact that a Timber object may have multiple interfaces — some ob
may even generate new interfaces on demand (recall that an interface is simply a
that contains at least one method).

To facilitate straightforward comparison of arbitrary object reference values, Tim
provides the primitive typeObjRef with the built-in subtype rule

Ref a < ObjRef .

By means of this rule, all object references can be compared for equality (using
overloaded primitive==) when considered as values of the supertypeObjRef. Timber
moreover provides a predefined record typeObjIdentity, which forms a convenient base
from which interface types supporting a notion of object identity can be built.

record ObjIdentity where
self :: ObjRef

For example, suppose that we wish to defineICounter as a subtype of the counter type
whose objects can be compared for identity.

record ICounter < ObjIdentity, Counter

iCounter :: Template ICounter
22 Timber: A Programming Language for Real-Time Embedded Systems

70

Reactive objects

tion

-

-
ecific

ct to
.

ction
uted

e

notes
iCounter = template
c <- counter

in record
self = self
inc = c.inc
read = c.read

Now we can compare the identity of two iCounters:

do c1 <- iCounter
c2 <- iCounter
return (c1 == c2) -- always false

Expressions vs.
commands

Although commands are first-class values in Timber, there is a sharp distinc
between theexecutionof a command, and theevaluationof a command considered as a
functional value. The following examples illustrate this point.

f :: Counter -> (Cmd (), Cmd Int)
f cnt = (cnt.inc, cnt.read)

The identifierf defined here is a function, not a procedure: it cannot beexecuted; it can
only be applied to arguments of typeCounter. The fact that the returned pair has com
mand-valued components does not change the status off. In particular, the occurrence of
sub-expressionscnt.inc andcnt.read in the right-hand side off doesnot imply that the
methods of some counter object are invoked when evaluating applications off. Extract-
ing the first component of a pair returned byf is also a pure evaluation with no side
effects. However, the result in this case is a command value, which has the sp
property of beingexecutable.

By placing a command in the body of a procedure, the command becomes subje
execution,whenever the procedure itself is executed. Such a procedure is shown below

do c <- counter
fst (f c)

The second line applies f to a counter object, resulting in a pair. The standard fun
fst extracts the first element of the pair, which is a command. This command is exec
when the procedure (thedo construct) in which it is defined is executed.

The separation betweenevaluationandexecutionof command values can be made mor
explicit by introducing a name for the evaluated command. This is achieved by thelet -
command, which is a purely declarative construct: as usual, the equality sign de
definitional equality.

do c <- counter
let newCmd = fst (f c) -- Now newCmd denotes a command

newCmd -- this causes the command to be executed
Timber: A Programming Language for Real-Time Embedded Systems 23

71

Reactive objects

ounter
ther

g

one:

tate of

he

s

Hence the two preceding examples are actually equivalent, and in each case a c
will be created once and incremented once. The following fragment is yet ano
equivalent example,

do c <- counter
let aCmd = fst (f c) -- Now aCmd and bCmd

bCmd = fst (f c) -- both name the same command
in aCmd

whereas the next procedure has a different operational behaviour (here theinc method
of c will actually be invoked twice).

do c <- counter
let newCmd = fst (f c)
in newCmd

newCmd

A computation that behaves likef above, but which also has the effect of incrementin
the counter it receives as an argument, must be expressed as a procedure.

g :: Counter -> Cmd (Cmd (), Cmd Int)
g cnt = do c.inc

return (c.inc, c.read)

Note that the type system clearly separates the effectfull computation from the pure
the result type off is a value, whereas the result type ofg is a command.

Likewise, the type system demands that computations that depend on the current s
some object be implemented as procedures. For example,

h :: Counter -> Int
h cnt = cnt.read ∗ 10

is not type correct, sincecnt.read is not an integer — it is acommandthat,when exe-
cuted,returns an integer. If we really want to compute the result of multiplying t
counter value by 10 we can write

h :: Counter -> Cmd Int
h cnt = do v <- cnt.read

return (v ∗ 10)

The fact thath calls theread method of the counter is reflected in the return type ofh,
which isCmd Int.

Subtyping in the O monad We have already indicated that theCmd andO s monads are related by subtyping. Thi
is formally expressed as a built-in subtype rule.

Cmd a < O s a
24 Timber: A Programming Language for Real-Time Embedded Systems

72

Reactive objects

es this
ated

ation
ertain

s. Note

nd

ed that
is the

of
This rule can be read as a higher-order relation: “all commands in the monadCmd are
also commands in the monadO s, for anys”.

One way of characterizing theCmd monad is as a refinement of theO monad that repre-
sents those commands that are independent of the current local state. Timber tak
idea even further by providing three more primitive command types, which are rel
to theCmd monad via the following built-in subtyping rules.

Template a < Cmd a
Action < Cmd ()
Request a < Cmd a

The intention here is to provide more precise typings for thetemplate , action , and
request constructs. For example,Template a is the type of atemplate that, when exe-
cuted, constructs an object with an interface of typea. Thus, the type inferred for
counter defined on page 17 is actuallyTemplate Counter (rather thanCmd Counter),
and the types of its two methods areAction andRequest Int. The record typeCounter
can of course be updated to take advantage of this increased precision.

record Counter where
inc :: Action
read :: Request Int

Unlike the refinement step of going fromO s to Cmd, which actually makes more pro-
grams typeable because of the rank-2 polymorphism, the distinction betweenCmd and
its subtypes has mostly a documentary value. However, by turning a document
practice into type declarations, the type system can be relied on to guarantee c
operational properties. For example, a command of typeTemplate a cannot change the
state of any existing objects when executed: object instantiation onlyaddsobjects to the
system state. Moreover, commands of typeAction or Template a are guaranteed to be
deadlock-free, since a synchronous method can never possess any of these type
that none of these properties hold for a general command of typeCmd a.

Of the type constructors mentioned here,Cmd, Template, andRequest are all covariant
in their single argument. This also holds for the typeO s a in case of its second argu-
ment. However, theO constructor, like all types that support both dereferencing a
assignment, must be invariant in its state component. Similarly,Ref is also invariant.

The main template So far, we have seen how to define functions and procedures, and have emphasiz
procedures are executed only when some other procedure calls them. How, then,
execution of a Timber program started?

A Timber program should have a special template calledmain. This template is parame-
terized by anenvironmentthat gives the program the ability to interact with the rest
the system. The type of themain template must be

 main :: Environment -> Template Program
Timber: A Programming Language for Real-Time Embedded Systems 25

73

Reactive objects

on

which
ed to

ten-
r: its
at any
ate of

ject.
is no

ously,

ssages
will
one

nother
e exe-
The definitions of the typesEnvironment andProgram depend on the capabilities of the
particular system for which the Timber program is written. The section “Reactivity”
page 27 provides more details of these types.

When a Timber program is started, the system will applymain to an environment
parameter. The resulting template is then used by the system to create an object
constitutes the system's interface to the running program. This interface is requir
contain an actionstart, which the system executes to initialize the program.

Here is the traditional “Hello World” program in Timber:

main env = template
-- no state

in record
start = action

env.putStr "Hello World!\n"

Concurrency In general, execution of a Timber program is concurrent: many commands may po
tially be active simultaneously. However, each Timber object behaves like a monito
methods execute in mutual exclusion, so at most one of its methods can be active
given time. Since all state is encapsulated in some object, this ensures orderly upd
the state.

In the following example, two contending clients send messages to a counter ob
Mutual exclusion between method executions in the counter guarantees that there
danger of simultaneous updates to the counter’s state.

proc cnt = template
-- this object has no state of its own

in record
doIt = action cnt.inc

f env = do c <- counter
p <- proc c
p.doIt
c.inc
v <- c.read
env.putStr (show v)

Hereproc is function that returns a template (a particular kind ofCmd). The command
p <- proc c (inside thedo) parameterizesproc by the counter objectc andexecutesproc
c: the result is a new object with a single method calleddoIt. The message sendp.doIt
starts execution of this method, which then executes autonomously and asynchron
because the method is an action.

Methods are not guaranteed to be executed in the order that the corresponding me
are sent. Their execution is instead scheduled subject to timing constraints, which
be discussed in Section 6. However, in the absence of explicit timing constraints, if
message send precedes (in the sense of Lamport’s “happened before” relation) a
send to the same object, it is safe to assume that the corresponding methods will b
26 Timber: A Programming Language for Real-Time Embedded Systems

74

Reactive objects

now

ges

thod
nite
tions
hods,

t that
there
nnot
lso
s

using

ked
r pro-

;
ject or
pro-

ment
nt, and

e be
ber

ph

pro-
cuted in the same order. This is also illustrated by the previous example, as we
explain.

In the proceduref the messageinc is sent to p before the messageread. There are no
explicit timing annotations on the message sendsc.inc and c.read. Thus, inc will be
executed beforeread, and it is safe to assume that the valuev returned from theread
request is at least1. In contrast, the send ofdoIt to p initiates a concurrent activity,
becausedoIt is an action. Nothing can be said about whether thedoIt action of objectp
will be scheduled to send itsinc message before, in between, or after the two messa
sent in proceduref.

Reactivity Objects alternate between indefinitely long phases of inactivity and periods of me
execution that must be finite, unless the programmer has explicitly written an infi
loop. Given a sufficiently fast processor, in many applications the method execu
may be considered to be instantaneous. When used with very short duration met
Timber then approximates Berry’sperfectly synchronous model of computation [3].

The existence of value-returning synchronous methods does not change the fac
method executions are finite, since, assuming that the system is not in deadlock,
are noothercommands that may block indefinitely, and hence sending a request ca
block indefinitely either. Thus, it is important that the computing environment a
adheres to this reactive view, bynotproviding any operations that might block a proces
indefinitely.

This means, for example, that a Timber program cannot read input from a console
a blocking primitive. Instead, interactive Timber programs installcallback methodsin
the computing environment, with the intention that these methods will be invo
whenever the event that they are set to handle occurs. As a consequence, Timbe
grams do not generally terminate when thestart action of the main template returns
instead, they are considered to be alive as long as there is at least one active ob
one installed callback method in the system. (Alternatively, the environment may
vide aquit method that terminates the whole program).

The overall form of a Timber program is thusnot a (potentially) infinite main loop.
Instead, a Timber program defines a set of objects and binds events in the environ
to message sends to those objects. When the events occur, the messages will be se
the corresponding methods will be scheduled for execution.

The actual shape of the interface to the computing environment must of cours
allowed to vary with the type of application being constructed. The current Tim
implementation supports several environment types, includingTixEnv, BotEnv, and
StdEnv, which model the computing environments offered by a Tk server with gra
building extensions [2], a mobile Robot, and thestdiofragment of a Unix operating sys-
tem, respectively.

As an illustration of the use of environments, let us see how a text-based Timber
gram might work in a minimal Unix-like computing environment:
Timber: A Programming Language for Real-Time Embedded Systems 27

75

Time

-

to the

is
reat
ried
age

ms—
d in
e and

to
he

ase-
-

e
ac-

ich
record StdEnvironment where
putStr :: String -> Action
quit :: Action

record StdProgram where
start :: Action
char :: Char -> Action
signal :: Int -> Action

main :: StdEnvironment -> Template StdProgram

The program can send the messageputStr to the environment to output strings. The sys
tem will deliver characters and signals to the program by executing the actionschar and
signal when a new character is typed or a signal is generated.

For an example of a more elaborate environment interface, the reader is referred
vehicle controller discussed in Section 8.

6. Time

So far, our discussion of Timber has (intentionally) avoided the topic of time. This
conventional in the definition of programming languages; ignoring time has the g
advantage of allowing conforming implementations of a language to exist on va
hardware and software platforms. Unfortunately, ignoring time makes a langu
unsuitable for programming real-time systems, with the result that embedded syste
almost alone in the universe of modern software—are frequently programme
assembly language or in a way that must escape from the programming languag
appeal to the primitives of a real-time operating system for all critical operations.

With Timber we attempt to find some middle ground by allowing the programmer
placeboundson the execution time of actions, while allowing the implementation t
freedom to schedule the actions within those bounds. We use the notion ofdeadline—
the latest time before which an action must complete, andbaseline—the earliest time
after which the action may commence. We call the closed interval bounded by a b
line and a deadline atimeline; while an action is executing the current time will nor
mally be within the timeline for that action. It is possible to read the current tim
directly, but since this will vary from one execution to the next, the timeline is in pr
tice more useful.

Specifying Time Timber has two built-in datatypes for time:TimeInstant and TimeDuration.
TimeInstant refers to a calendar date and time;TimeDuration to the interval between

two TimeInstants†. Neither the precision nor the accuracy of the clock against wh

†. The namesTimeDurationandTimeInstantare taken from ISO 8601[10] and the XML Schema
Specifications for DataTypes [5]
28 Timber: A Programming Language for Real-Time Embedded Systems

76

Time

enta-
quire
ith

es

wo
-

, this
eed,
dif-

time-
s it.
,

times are measured are dictated by the Timber language. This means that implem
tions are free to provide as coarse or as fine a notion of time as their applications re
or their platforms permit. However, Timber does require that time is monotonic w
respect to the Lamport Logical Clock [13]. That is, if an actiona “happened before” an
actionb, then the current time observable ina must not be later than the current time
observable inb. Note that, because of the finite granularity of the clock, the two tim
may be equal.

The datatypeTimeInterval is used to represent the interval between and including t
TimeInstants. The operatorsuntil, from andending can be used to construct TimeInter
vals:

until :: TimeInstant -> TimeInstant -> TimeInterval
from :: TimeDuration -> TimeInstant -> TimeInterval
lasting :: TimeInstant -> TimeDuration -> TimeInterval
ending :: TimeDuration -> TimeInstant -> TimeInterval

In the following,tod1 is aTimeInstant, andhours is aTimeDuration. tod2 is defined to
denote a timeInstant that is one hour later than tod1:

tod2 = tod1 + (1 * hours)

The following definitions all specify the sameTimeInterval, namely, the interval
betweentod1 andtod2.

i1 = tod1 `until` tod2
i2 = (1 * hours) `from` tod1
i3 = tod1 `lasting` (1 * hours)
i4 = (1 * hours) `ending` tod2

The operatorsbaseline, deadline andduration can be used to examine aTimeInterval:

baseline :: TimeInterval -> TimeInstant
deadline:: TimeInterval -> TimeInstant
duration :: TimeInterval -> TimeDuration

In the scope of the above let expression, the following are true:

baseline i1 == tod1
deadline i1 == tod2
duration i1 == (1 * hours)

Timelines for Actions Every method execution in a Timber program has an associated timeline. Normally
timeline is the same as the timeline of the method that initiated the execution; ind
this is always the case for requests. However, for actions, it is possible to specify a
ferent timeline, as we will see shortly.

Actions invoked by the environment are also assigned timelines. For example, the
line for thestart action is determined by the operating system command that initiate
Normally it has a baseline representing theTimeInstant at which the program is started
Timber: A Programming Language for Real-Time Embedded Systems 29

77

Time

am-
ge to

end
s are

r

g
s
f

the

tion
ary to

xpress
iod

e

mical
” of
roduc-

er
hould
and a deadline specifying when initialization must be completed. To give another ex
ple: when the environment receives an interrupt from a sensor, it sends a messa
some Timber object that initiates an action. The timeline for this action might ext
from the instant that the interrupt arrives until the instant when the sensor reading
no longer guaranteed to be available in the device register.

Specifying the Timeline If a Timber action with timelineτ sends a message initiating an actionA, then the
default timeline forA is alsoτ. The baseline forA can be specified to be something othe
thanτ.baseline than by means of the constructafter b A, whereb is aTimeDuration.
This gives the actionA a baseline ofb + τ.baseline; A’s deadline isτ.deadline. Simi-
larly, the deadline forA can be specified by means of the constructbefore d A, whered
is a TimeDuration; this initiates the actionA with a deadline of d +τ.baseline. In this
caseA’s baseline isτ.baseline.

The before and after constructs give the programmer an explicit way of specifyin
which aspects of a reaction are time-critical. If an actionA sends a message that initiate
an actionB in some other object, the deadline forB will by default be the same as that o
A itself. However, by using thebefore command, the deadline forB can be changed to
be later than the deadline forA.

Whether it is appropriate to change the deadline in this way depends entirely on
application. For example,A may be a time-critical reaction to a real-time event, butB
may be a housekeeping operation that can be deferred indefinitely; in this case,B may
be given a very much more generous (even infinite) deadline. In contrast, if comple
of B is part of the required response to the external event, then it may be necess
giveB the same deadline asA.

By using a recursive message send that specifies a new baseline, it is possible to e
periodicscheduling. For example, the following controller schedules itself with a per
of 0.1 seconds:

controller = action
do_periodic_stuff
after (0.1 * seconds) controller

It is important to note that thenth execution of this action will have terminated befor

the (n+1)th execution starts.

Execution Model The model of concurrent execution used by Timber is based on the idea of the Che
Abstract Machine [4]. The state of an executing program is envisioned as a “soup
molecules. Sometimes these molecules react together, becoming absorbed and p
ing new molecules as a result.

There are two kinds of molecules in the Timber “soup”:objects andmessages.

Objects.Objects are alwaysnamed. The names bear no relationship to any identifi
that might be used to reference an object in the Timber program. Instead, a name s
be thought of as a unique identifier that distinguishes an object from all others.
30 Timber: A Programming Language for Real-Time Embedded Systems

78

Time

t

d

we

new

and
e
uests),

sage
e

ele-

sage
e

bject

m-

m-

is

hich
mber
ent”:
Objects can either beactiveor inactive. An active object is denotedo:Obj〈C, τ, s〉. Such
an object, namedo, is executing the command sequenceC in response to a message sen
from the object nameds, using the timelineτ. An inactive object is denotedo:Obj〈〉.

Messages.Messages are denotedMsg〈o, C, τ, s〉, which amounts to a message targete
at objecto, containing the command sequenceC, to be executed with the timelineτ, on
behalf of the invoking objects. If the message corresponds to an invoked action,
will use the special identifier_ for the invoking object.

Object creation.When an object is created by executing a template command, a
objecto:Obj〈〉 is created, using a fresh nameo. The state variables ofo is initialized as
described by the template, and sub-objects are recursively created. All actions
requests in the template are alsoassociatedwith the nameo, so that messages can b
sent to the correct target. The interface (containing the associated actions and req
is returned.

Action message send.When a (asynchronous) action message is sent, a new mes
of the formMsg〈o, C, τ, _〉 is created, whereo is the target object associated with th
action,C is the command sequence in the action, andτ is the timeline specified for the
action (see “Specifying the Timeline” on page 30). The identity of the sender is irr
vant in this case, and so is denoted by_.

Request message send.When a (synchronous) request message is sent, a new mes
of the formMsg〈o, C, τ, s〉 is created, whereo is the target object associated with th
request,C is the command sequence in the action, andτ is the timeline of the invoking
method. The invoking method is blocked, awaiting a reply fromo.

Dispatching of a message.If an idle objecto:Obj〈〉 and a messageMsg〈o, C, τ, s〉 that
targetso both exist at the same time, then the message can bedispatched. This means
that both o and the message are consumed and are replaced by the active o
o:Obj〈C, τ, s〉. Note that this dispatch is constrained by thescheduling rulesoutlined in
the next section.

Completing an action.When an active object has finished executing an action co
mand sequence, it is transformed into the idle object.

Completing a request.When an active object has finished executing a request co
mand sequence, it is on the formo:Obj〈return e, τ, s〉. It will be transformed into the
idle object o:Obj〈〉, and the objects that originally sent the request message
unblocked. The return value of the message send is the value ofe.

Scheduling In the Timber execution model, scheduling reduces to the problem of choosing w
message to dispatch next. The exact scheduling algorithm is not a part of the Ti
language specification. Instead, we envisage the scheduler as a “plug in compon
different schedulers may be chosen to meet the needs of different applications.

However, any schedulermust preserve the following properties:

1. No message may be dispatched before its baseline.
Timber: A Programming Language for Real-Time Embedded Systems 31

79

Time

essage
eline.
ear-
2. If two messages to the same objecto, A = Msg〈o, m, τ1, _ 〉 andB = Msg〈o, n, τ2, _ 〉
are both eligible for dispatch, andA was sentbeforeB, in the sense of Lamport’s
“happened before” relation, thenB can only be dispatched beforeA if

• τ2.baseline < τ1.baseline, or

• τ2.baseline = τ1.baseline and τ2.deadline < τ1.deadline.

The second property guarantees that the order is preserved in a sequence of m
sends from one object to another, provided that all the messages have the same tim
However, if a programmer explicitly gives a later message an earlier baseline or an
lier deadline, then the later message may be dispatched before the earlier one.

Example of Reduction
Semantics

Recall our definition of the counter template:

counter = template
val := 0

in record
inc = action val := val + 1
read = request return val

Suppose we have an active objecto:Obj〈C, τ, _ 〉, where isC is the following command
sequence:

c <- counter
c.inc
c.inc
v <- c.read
env.putStr (show v)

Here is how the system can evolve:

o:Obj〈c <- counter
 c.inc
 c.inc
 v <- c.read
 env.putStr (show v), τ, _ 〉

Unfold definition ofcounter, create new object, with fresh nameo1. Return interface
with methods associated with o1

o:Obj〈c <- return (record inc = action 〈o1〉 val := val + 1
read = request 〈o1〉 return val)

 c.inc
 c.inc
 v <- c.read
 env.putStr (show v), τ, _ 〉

o1:Obj〈〉 [val := 0]

Bind c to returned expression
32 Timber: A Programming Language for Real-Time Embedded Systems

80

Time
o:Obj〈let c = record inc = action 〈o1〉 val := val + 1
read = request 〈o1〉 return val)

 c.inc
 c.inc
 v <- c.read
 env.putStr (show v), τ, _ 〉

o1:Obj〈〉 [val := 0]

Evaluatec.inc

o:Obj〈let c = record inc = action 〈o1〉 val := val + 1
read = request 〈o1〉 return val)

action 〈o1〉 val := val + 1
 c.inc
 v <- c.read
 env.putStr (show v), τ, _ 〉

o1:Obj〈〉 [val := 0]

Invoke the first action, creating a new message

o:Obj〈let c = record inc = action 〈o1〉 val := val + 1
read = request 〈o1〉 return val)

 c.inc
 v <- c.read
 env.putStr (show v), τ, _ 〉

o1:Obj〈〉 [val := 0]

Msg〈o1, val := val + 1, τ, _ 〉

Dispatch the message (this is just one of many possible schedules)

o:Obj〈let c = record inc = action 〈o1〉 val := val + 1
read = request 〈o1〉 return val)

c.inc
 v <- c.read
 env.putStr (show v), τ, _ 〉

o1:Obj〈val := val + 1, τ, _ 〉 [val := 0]

Invoke the second action (this is just one of many possible schedules)

o:Obj〈let c = record inc = action 〈o1〉 val := val + 1
read = request 〈o1〉 return val)

 v <- c.read
 env.putStr (show v), τ, _ 〉

o1:Obj〈val := val + 1, τ, _ 〉 [val := 0]

Msg〈o1, val := val + 1, τ, _ 〉
Timber: A Programming Language for Real-Time Embedded Systems 33

81

Time

ssage
Evaluatec.read (this is just one of many possible schedules), garbage collectc

o:Obj〈v <- request 〈o1〉 return val
 env.putStr (show v), τ, _ 〉

o1:Obj〈val := val + 1, τ, _ 〉 [val := 0]

Msg〈o1, val := val + 1, τ, _ 〉

Invoke request (this is just one of many possible schedules)

o:Obj〈v <- 〈blocked〉
 env.putStr (show v), τ, _ 〉

o1:Obj〈val := val + 1, τ, _ 〉 [val := 0]

Msg〈o1, val := val + 1, τ, _ 〉

Msg〈o1, return val, τ, o〉

Execute assignment, complete action

o:Obj〈v <- 〈blocked〉
 env.putStr (show v), τ, _ 〉

o1:Obj〈〉 [val := 1]

Msg〈o1, val := val + 1, τ, _ 〉

Msg〈o1, return val, τ, o〉

Dispatch message (scheduling requirements state that this is the only possible me
to dispatch foro1)

o:Obj〈v <- 〈blocked〉
 env.putStr (show v), τ, _ 〉

o1:Obj〈val := val + 1, τ, _ 〉 [val := 1]

Msg〈o1, return val, τ, o〉

Execute assignment, complete action

o:Obj〈v <- 〈blocked〉
 env.putStr (show v), τ, _ 〉

o1:Obj〈〉 [val := 2]

Msg〈o1, return val, τ, o〉

Dispatch message
34 Timber: A Programming Language for Real-Time Embedded Systems

82

Additional Features

kell

ifted
.

o:Obj〈v <- 〈blocked〉
 env.putStr (show v), τ, _ 〉

o1:Obj〈return val, τ, o〉 [val := 2]

Evaluate local state variable

o:Obj〈v <- 〈blocked〉
 env.putStr (show v), τ, _ 〉

o1:Obj〈return 2, τ, o〉 [val := 2]

Complete request, unblock invoking object

o:Obj〈v <- return 2
 env.putStr (show v), τ, _ 〉

o1:Obj〈〉 [val := 2]

Bind v to returned expression, garbage collect o1

o:Obj〈 let v = 2
env.putStr (show v), τ, _ 〉

Evaluate expression, garbage collect v

o:Obj〈env.putStr "2", τ, _ 〉

7. Additional Features

Timber also provides a number of minor, mostly syntactic extensions to the Has
base, which we will briefly review in this section.

Extended do-syntax Thedo -syntax of Haskell already contains an example of an expression construct l
to a corresponding role as a command: thelet -command, illustrated in “Expressions vs
commands” on page 23. Timber defines commands corresponding to theif - andcase -
expressions as well, using the following syntax.

do if e then
cmds

else
cmds

if e then
cmds

case e of
p1 -> cmds
p2 -> cmds
Timber: A Programming Language for Real-Time Embedded Systems 35

83

Additional Features

and

l

g

m-
psu-
e
ble,
dinary
syn-

in the

-
dy in
d type

ari-
In addition, Timber provides syntactic support for recursive generator bindings,
iteration.

do fix x <- cmd y
y <- cmd x

forall i <- e do
cmds

while e do
cmds

Array updates To simplify programming with the primitiveArray type, Timber supports a specia
array-update syntax for arrays declared as state variables. Assuminga is such an array,
an update toa at indexi with expressione can be done as follows. (The array indexin
operator in Haskell is!)

a!i := e

Semantically, this form of assignment is equivalent to

a := a // [(i,e)]

where// is Haskell’s pure array update operator. But apart from being intuitively si
pler, the former syntax has the merit of making it clear that normal use of an enca
lated array is likely to be single-threaded,i.e., implementable by destructive update. Th
rare cases wherea is used for a purpose other than indexing become easily identifia
and hence conservative of the array can be reserved for these occasions. Or
updates toa can be performed in place, which is also exactly what the array-update
tax above suggests.

Record stuffing Record expressions may optionally be terminated by a type constructor name, as
following examples:

record ..S

record a = exp; b = exp; ..S

These expressions utilizerecord stuffing, a syntactic device for completing record defi
nitions with equations that just map a selector name to an identical variable alrea
scope. The missing selectors in such an expression are determined by the appende
constructorS, which must stand for a record type, on condition that corresponding v
ables are defined in the enclosing scope. So ifS is a (possibly parameterized) record
type with selectorsa, b, andc, the two record values above are actually

record a = a; b = b; c = c

and

record a = exp; b = exp; c = c
36 Timber: A Programming Language for Real-Time Embedded Systems

84

An Autonomous Vehicle Controller

is

 but
an-
d by a
an
uta-
wherec, and in the first case evena andb, must already be bound. Record stuffing
most useful in conjunction withlet -expressions, as we will see in the examples.

8. An Autonomous Vehicle Controller

We present here a complete Timber program. The example is idealized for brevity,
illustrates Timber’s reactive style of programming and many of the features of the l
guage. This example also shows the separation between the calculations performe
program and the interactions in which it is involved. Since it is an implementation of
interrupt-driven system with parallel processes that also performs significant comp
tion, it captures many of the characteristics of an embedded system.

The environment that this program assumes is as follows:

record Register where
load :: Cmd Int
store :: Int -> Cmd ()

record EmbeddedEnv where
register_at :: Int -> Template Register
reset :: Action

record EmbeddedProgram where
start :: Action
interrupts :: [(Int,Action)]

Here is the controller program itself:

module AGV where

type Angle = Float
type Speed = (Angle,Float)
type Pos = (Float,Float)

calcpos :: [Angle] -> [Pos] -> Pos
regulate :: Pos -> Pos -> Speed -> Speed
room :: [Pos]

calcpos = undefined
regulate = undefined
room = undefined

--

record Driver where
new_scan :: [Angle] -> Action
new_path :: [Pos] -> Action
Timber: A Programming Language for Real-Time Embedded Systems 37

85

An Autonomous Vehicle Controller
driver :: Servo -> Template Driver
driver servo =

template
speed := (0.0,0.0)
path := repeat (0.0,0.0)

in record
new_scan angles = action

let is_pos = calcpos angles room
should_pos:path' = path
speed' = regulate is_pos should_pos speed

speed := speed'
path := path'
servo.set_speed speed'

new_path p = action
path := p

record Scanner where
detect :: Action
zero_cross :: Action

tick_period = 100*milliseconds
reg_change= 10*microseconds

scanner :: Register -> Driver -> Template Scanner
scanner angle_reg driver =

template
angles := []

in record
detect = before reg_change action

a <- angle_reg.load
angles := 2*pi*(fromIntegral a)/4000 : angles

zero_cross = action
before tick_period driver.new_scan angles
angles := []

record Servo where
set_speed :: Speed -> Action

servo :: Register -> Register -> Template Servo
servo = undefined

record Radio where
incoming :: Action

radio :: Register -> Driver -> Template Radio
radio = undefined
38 Timber: A Programming Language for Real-Time Embedded Systems

86

Appendix: A Context-Free Grammar for Timber

main :: EmbeddedEnv -> Template EmbeddedProgram
main env =

template
thrust_reg <- env.register_at 0xFFFF0001
steer_reg <- env.register_at 0xFFFF0002
angle_reg <- env.register_at 0xFFFF0003
radio_reg <- env.register_at 0xFFFF0004

serv <- servo thrust_reg steer_reg
driv <- driver serv
scan <- scanner angle_reg driv
comm <- radio radio_reg driv

in record
start = action done
interrupts = [

(0x80, scan.detect),
(0x81, scan.zero_cross),
(0x82, comm.incoming)

]

Appendix: A Context-Free Grammar for Timber

Module Header module :'module ' CONID 'where ' body

body : '{' topdecls '}'
| topdecls -- using layout

Top-level declarations topdecls : topdecls ';' topdecl
| topdecl

topdecl :' type ' CONID tyvars '=' type
| 'data ' CONID tyvars optsubs optcs
| ' record ' CONID tyvars optsups optbs
| 'class ' CONID tyvars optsups optbs
| ' instance ' qtype optbs
| bind

tyvars : tyvars VARID
| {- empty -}

optsups : '<' types
| '<' type
| {- empty -}

optsubs : '>' types
| '>' type
| {- empty -}
Timber: A Programming Language for Real-Time Embedded Systems 39

87

Appendix: A Context-Free Grammar for Timber
Datatype declarations optcs : '=' constrs
| {- empty -}

constrs : constrs '|' qconstr
| qconstr

qconstr : context '=>' constr
| constr

constr : constr atype
| CONID

Bindings optbs :'where ' bindlist
| {- empty -}

bindlist : '{' binds '}'
| binds -- using layout
| '..' CONID -- only in a record expression

binds : binds ';' bind
| bind

bind : vars '::' qtype
| pat rhs -- unless inside a record declaration

vars : vars ',' var
| var

rhs : '=' exp
| gdrhss
| rhs'where ' bindlist

gdrhss : gdrhss gdrhs
| gdrhs

gdrhs : '|' quals '=' exp

Qualified types qtype : context '=>' type
| type

context : '(' preds ')'
| pred

preds : preds ',' pred
| pred

pred : classpred
| type '<' type

classpred : classpred atype
| CONID

Types type : btype '->' type
| btype
40 Timber: A Programming Language for Real-Time Embedded Systems

88

Appendix: A Context-Free Grammar for Timber
btype : btype atype
| atype

atype : CONID
| VARID
| '[' ']'
| '(' '->' ')'
| '(' commas ')'
| '(' ')'
| '(' type ')'
| '(' types ')'
| '[' type ']'

types : types ',' type
| type ',' type

commas : commas ','
| ','

Expressions exp : '\' apats '->' exp
| ' let ' bindlist ' in ' exp
| ' if ' exp ' then ' exp 'else ' exp
| 'case ' exp 'of ' altlist
| ' record ' bindlist
| 'do ' stmtlist
| 'action ' stmtlist
| ' request ' stmtlist
| ' template ' stmtlist ' in ' exp
| ' template ' ' in ' exp
| 'after ' aexp exp
| 'before ' aexp exp
| exp '::' qtype
| infixexp

infixexp : infixexp op infixexp
| '-' fexp
| fexp

fexp : fexp aexp
| aexp

aexp : aexp SELID
| bexp

bexp : var
| 'self '
| con
| lit
| '(' ')'
| '(' exp ')'
| '(' exps ')'
| '[' list ']'
| '(' infixexp op ')'
Timber: A Programming Language for Real-Time Embedded Systems 41

89

Appendix: A Context-Free Grammar for Timber
| '(' op infixexp ')'
| '(' commas ')'

lit : INT
| RATIONAL
| CHAR
| STRING

List expressions list : {- empty -}
| exp
| exps
| exp '|' quals

exps : exps ',' exp
| exp ',' exp

quals : quals ',' qual
| qual

qual : pat '<-' exp
| exp
| ' let ' bindlist

Case alternatives altlist : '{' alts '}'
| alts -- using layout

alts : alts ';' alt
| alt

alt : pat rhs1

rhs1 : '->' exp
| gdrhss1
| rhs1'where ' bindlist

gdrhss1 : gdrhss1 gdrhs1
| gdrhs1

gdrhs1 : '|' quals '->' exp

Statement sequences stmtlist : '{' stmts '}'
| stmts -- using layout

stmts : stmts ';' stmt
| stmt

stmt : pat '<-' exp
| exp
| pat ':=' exp
| ' let ' bindlist
| ' if ' exp ' then ' stmtlist 'else ' stmtlist
| ' if ' exp ' then ' stmtlist
| 'case ' exp 'of ' altlist2
| ' forall ' quals'do ' stmtlist
42 Timber: A Programming Language for Real-Time Embedded Systems

90

Appendix: A Context-Free Grammar for Timber
| 'while ' exp 'do ' stmtlist
| ' fix ' stmtlist

altlist2 : '{' alts2 '}'
| alts2 -- using layout

alts2 : alts2 ';' alt2
| alt2

alt2 : pat rhs2

rhs2 : '->' stmtlist
| gdrhss2
| rhs2'where ' bindlist

gdrhss2 : gdrhss2 gdrhs2
| gdrhs2

gdrhs2 : '|' quals '->' stmtlist

Patterns pat : pat op pat
| apats

apats : apats apat
| apat

apat : '_'
| var
| con
| lit
| '-' INT
| '-' RATIONAL
| '(' ')'
| '(' pat ')'
| '(' pats ')'
| '[' pats ']'
| '(' commas ')'

pats : pats ',' pat
| pat ',' pat

Variables, Constructors
and Operators

var : VARID
| '(' VARSYM ')'

con : CONID
| '(' CONSYM ')'

varop : VARSYM
| '`' VARID '`'

conop : CONSYM
| '`' CONID '`'

op : varop
| conop
Timber: A Programming Language for Real-Time Embedded Systems 43

91

Appendix: A Context-Free Grammar for Timber

le.

m-
g/

i-

-

Terminal symbols Rather than providing full definitions for the terminals, we illustrate them by examp

Variable Identifiers

VARID: abc | aBC | ab_c | abc1 | ...

Constructor Identifiers.

CONID: Abc | ABC | Ab_c | Abc1 | ...

Selector Identifiers:

SELID: .abc | .aBC | .ab_c | .abc1 | ...

Variable Symbols

VARSYM: + | < | <= | ...

Constructor Symbols

CONSYM: : | :+ | :< | :<= | ...

Integers

INT: 0 | 123 | 0x123ABC | ...

Rational Numbers

RATIONAL: 0.12 | 0.12E4 | 0.12E-4 | ...

Character Constants

CHAR: 'a' | 'X' | '\n' | ...

String Constants

STRING: "abc" | "abc\n" | ...

References

1. Haskell—A Purely Functional Language. Web site, http://www.haskell.org/

2. TiX: Tk interface eXtension. Web site, http://tix.sourceforge.net/

3. Gérard Berry,The Foundations of Esterel, in Proof, Language and Interaction: Essays in
Honour of Robin Milner, G. Plotkin, C. Stirling, and M. Tofte, Editors. 1998, MIT Press.

4. Gerard Berry and Gerard Boudol.The Chemical Abstract Machine. In Seventeenth annual
ACM symposium on Principles of programming languages, 1990, San Francisco, CA, USA:
ACM Press, .

5. Paul V. Biron and Ashok Malhotra, XML Schema Part 2: Datatypes. Stable W3C Reco
mendation 02 May 2001, World Wide Web Consortium (W3C), 2001. http://www.w3.or
TR/xmlschema-2/

6. Andrew P. Black.Object Identity. In Proceedings 3rd International Workshop on Object Or
entation in Operating Systems, 1993, Asheville, NC: IEEE Computer Society Press, .

7. Luca Cardelli and Peter Wegner,On Understanding Types, Data Abstraction, and Polymor
phism. ACM Computing Surveys, 1985.17(4): pp 471-522.

8. Benedict R. Gaster.Polymorphic Extensible Records for Haskell. In Haskell Workshop,
1997, Amsterdam, The Netherlands.
44 Timber: A Programming Language for Real-Time Embedded Systems

92

Appendix: A Context-Free Grammar for Timber

tand-

.

9. Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones and Philip Wadler.Type classes
in Haskell. In 5th European Symposium on Programming, 1994, Edinburgh, Scotland:
Springer Verlag, Lecture Notes in Computer Science vol. 788.

10. ISO, Representations of dates and times. 1988-06-15, International Organization for S
ardization, 1988.

11. Mark P. Jones.A System of Constructor Classes: Overloading and Implicit Higher-Order
Polymorphism. In Functional Programming and Computer Architecture, 1993, Copenhagen,
Denmark: ACM Press, .

12. Simon Peyton Jones, John Hughes, Lennart Augustsson,et al., Report on the Programming
Language Haskell 98: A Non-strict, Purely Functional Language. , , 1999. http://
www.haskell.org

13. Leslie Lamport,Time, Clocks, and the Ordering of Events in a Distributed System. Commu-
nications of the ACM, 1978.21(7): pp 558-565.

14. R. Milner, M. Tofte and R. Harper,The Definition of Standard ML. 1990, Cambridge, MA:
MIT Press.

15. Johan Nordlander. Reactive Objects and Functional Programming [Ph.D. Dissertation]
Chalmers University of Technology, Göteborg, Sweden:1999.

16. R. K. Raj, E. D. Tempero, H. M. Levy, A. P. Black, N. C. Hutchinson and E. Jul,Emerald: A
General Purpose Programming Language. Software—Practice & Experience, 1991.21(1):
pp 91-118.

17. David Ungar and Randall B. Smith.Self: The Power of Simplicity. In OOPSLA'87, 1987.
Timber: A Programming Language for Real-Time Embedded Systems 45

93

APPENDIX C

Reactive Objects. Johan Nordlander, Mark Jones, Magnus Carlsson, Dick Kieburtz, and Andrew

Black, Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing (ISORC 2002), Arlington, VA, 2002.

94

http://www.cse.ogi.edu/PacSoft/projects/Timber/reactive-objects.pdf

Reactive Objects

Johan Nordlander, Mark P. Jones, Magnus Carlsson, Richard B. Kieburtz, and Andrew Black∗

OGI School of Science & Engineering at OHSU, 20000 NW Walker Road, Beaverton, OR 97006.

Abstract

Object-oriented, concurrent, and event-based program-
ming models provide a natural framework in which to ex-
press the behavior of distributed and embedded software sys-
tems. However, contemporary programming languages still
base their I/O primitives on a model in which the environ-
ment is assumed to be centrally controlled and synchronous,
and interactions with the environment carried out through
blocking subroutine calls. The gap between this view and the
natural asynchrony of the real world has made event-based
programming a complex and error-prone activity, despite re-
cent focus on event-based frameworks and middleware.

In this paper we present a consistent model of event-based
concurrency, centered around the notion ofreactive objects.
This model relieves the object-oriented paradigm from the
idea of transparent blocking, and naturally enforces reactiv-
ity and state consistency. We illustrate our point by a pro-
gram example that offers substantial improvements in size
and simplicity over a corresponding Java-based solution.

1 Background

In the traditional view of programming, the program is
assumed to be the master of its environment, and interaction
with the environment is accordingly expressed in terms of
the subroutine abstraction. This programming model dates
back to the early age of batch-oriented computing, when
programmers saw a need to abstract away from low-level
details of peripheral devices—such as card-readers and line-
printers—that were used at the time. The key idea here is that
blocking of execution is madetransparent; that is, the pro-
grammer is supposed not to be interested in knowing whether
a subroutine obtains its result by some internal computation,
or by means of synchronization with an external device.

Despite many advances in language design, this sim-
ple, traditional view of I/O still prevails in contemporary
object-oriented languages. But modern software executes in
much more complex environments, with interactive point-
and-click graphics, ubiquitous networks, multiple threads of

∗email:{nordland,mpj,magnus,dick,black}@cse.ogi.edu

activity with inter-thread communication and sharing, and
so on. Embedded systems fit this description perhaps even
better, with their rich variety of asynchronous input sources,
and often clock-driven concurrent processes. In such envi-
ronments, the utility of the traditional, batch-oriented view
of interaction deteriorates rapidly.

The central problem is that, if external input is obtained as
the results of certain subroutine calls, a program must make
a choice as to what subroutine to call, and hence make a
premature commitment to which event it will accept next.
But the order of external events is seldom under program
control, so a naive adherence to the batch-oriented I/O model
quickly leads to programs in which events are either missed,
or else randomly reordered in time.

The common pattern of anevent loopin sequential object-
oriented software is an attempt to reduce the rigidity of the
traditional I/O model. However, an event-loop solution re-
quires that all events of interest are already encoded exter-
nally and posted to a common queue, which may not always
be the case. For example, the Java Abstract Window Toolkit
(AWT) uses a common event queue for mouse-clicks, key-
presses, and other GUI-related events [6]. Network sockets,
on the other hand, are not handled by the AWT. So a program
that needs to simultaneously monitor GUI events as well as
network packets must still battle the limitations of the tra-
ditional I/O model: how to wait for multiple asynchronous
events – all modelled as the results of distinct method calls
to the environment – at the same time?

A standard approach in scenarios like this is to allocate a
uniquethread of executionfor each potentially blocking op-
eration, writing the code for each thread as if only one future
event mattered. On the surface, such a strategy might appear
to simplify the design task, because each thread now fits the
traditional, batch-oriented I/O model quite well. However, in
any non-trivial application, where the specified reactions are
not completely independent, the original problem of coordi-
nating inputs from multiple, asynchronous sources has now
moved to another part of the program: namely, the thread in
which the results of the simple blocking threads must be co-
ordinated. To solve this problem one must of course face all
the well-known problems of concurrent thread programming
— assuring thread safety and state consistency, while also

95

ensuring liveness and avoiding deadlocks.
Notice, though, that in the AWT-plus-sockets scenario

sketched above there is nothing that actually suggests con-
currentexecution; what the extra threads achieve is really
the ability to perform concurrentblocking. While concur-
rency is an important tool in real-time programming, being
forced to use it just to circumvent an inappropriate I/O model
is not satisfactory. Also note that an abstract object model of
the example would probably consist of just one simple ob-
ject, equipped with methods corresponding to the events it
is required to handle: mouse clicks, key presses, and packet
arrivals. A central argument of this paper is that the heavy
encodings needed to turn even simple event-driven models
into working code is most unfortunate, and is an important
factor behind the perceived complexity of concurrent object-
oriented programming.

The current practice of using threads to circumvent the
traditional I/O model is extremely fragile, in the sense that
an accidental call to a blocking operation in the middle of
an event-handler will immediately destroy the responsive-
ness of that thread. That is, transparent blocking makes re-
sponsiveness a delicate property that can only be upheld by
careful programming, requiring knowledge not only of the
complex APIs that encode events and threads, but also of
all operations which potentially might block, and which thus
must be avoided. As an illustration, consider the following
quote from the documentation for Java’s New I/O library [9]:

That a selection key indicates that its channel is
ready for some operation is a hint, but not a guar-
antee, that such an operation can be performed by
a thread without causing the thread to block. It
is imperative that code that performs multiplexed
I/O be written so as to ignore these hints when they
prove to be incorrect.

Clearly some special skill or rigorous discipline is required
to navigate safely through such dangerous waters. It is es-
pecially noteworthy that this comment concerns a new li-
brary with pretensions to make event-driven Java program-
ming significantly easier than before.

The idea of transparent blocking takes its most so-
phisticated form in the remote-procedure-call paradigm, or
remote-method-invocation (RMI) as it is called using Java
terminology. Again, hiding the intricacies of synchroniza-
tion with a remote machine under a familiar subroutine-like
interface seems attractive at first, because it makes the code
of distributed programs look quite similar to code written for
use in a strictly local context.

However, the similarity is deceptive. A defining aspect
of a distributed system is usually that it is subject topartial
failure; that is, programs are expected to continue running
even if a remote server is down, broken, or otherwise unac-
cessible. Contrast this to failures directly affecting the local

node: here the failure of one component is equivalent to the
whole node going down. So in order to hide distribution, the
RMI paradigm must also hide the possibility of partial fail-
ures. What this means is that failure of any remote machine
in an RMI setup is equivalent to a total system failure. In
practice, RMI-based programs can only regain some form of
robustness by protecting the remote invocations by timeouts
and exception handlers. However, this of course also makes
the RMI paradigm considerably less convenient (and distri-
bution less transparent) [8].

2 Reactive objects

The conclusion we have drawn from the problems asso-
ciated with transparent blocking and batch-oriented I/O is
that significantly more robust event-based software can be
obtained by abandoning indefinite blocking altogether, and
letting an event-driven design permeate the whole program-
ming model. Thread packages, design patterns, and various
middleware layers can only do so much to alleviate the pro-
grammer from a fundamentally computer-centric view, and
they cannot help at all with enforcing responsiveness as long
as every method call has a potential of blocking.

Our alternative programming model takes as its start-
ing point the intuition behind the classical object-oriented
paradigm: objects are autonomous, objects maintain a state,
objects have methods, methods execute in response to mes-
sages. The main step towards a reactive variant of this model
is to relieve the classical model from any ties to the tra-
ditional way of viewing I/O. In its place, a more orthodox
object-oriented scheme of interaction can be devised:

• input—the environment calls a method of a program
object

• output—the program calls a method of an environment
object

Method calls in these categories do not just carry data, they
can also be seen as representing the actual input and output
eventsthemselves. Notice in particular the asymmetry be-
tween input and output that results from this scheme: output
is a concreteactof the program, while input is modelled as a
passive capability toreact. In other words, objects have full
control over the output events, but leave the input events to
be scheduled by the environment.

The autonomy and integrity of objects is essential to this
view, though. Just as it is usually beneficial to view real-
world objects as having a certain level of atomicity of op-
eration, so is it essential to keep software objects from be-
coming invaded by multiple method invocations at the same
time.

On the other hand, the concurrent operation of distinct
objects is a natural aspect of the real world, and we wish our

96

reactive objects to support the same intuition. We therefore
take it as a semantic foundation of our model that

every object is an autonomous unit of execution
that is either executing the sequential code of ex-
actly one method, or passively maintaining its
state.

The combination of inter-object concurrency with internal
sequential execution effectively makes a reactive object a
union of the well-known concepts of an encapsulated state
and a critical region.

Because objects are autonomous execution units, it makes
sense to distinguish betweenasynchronousandsynchronous
method invocations. In the former case, the sender of a mes-
sage continues execution in parallel with the receiving ob-
ject, whereas in the latter case, the sender and receiver per-
form a rendezvous. Of course, only synchronous methods
provide an opportunity to directly return a result from the
receiver to the sender of a message.

At a first glance, synchronous methods seem to provide
a way of reintroducing traditional input methods likegetc
in the model. We do however make an important restriction
that will prohibit such use:

no methods—in environments or in programs—
must block execution indefinitely.

This restriction rules out language constructs like selective
method filtering, as well as environments that provide naive
interfaces to blocking system calls. All that a synchronous
method call can do is to compute a reply based on the current
state of the receiver, possibly after performing some side-
effects. The serialization of all method executions of the re-
ceiving object does not change the fact that a synchronous
method is essentially an ordinary subroutine, since, by an
argument of transitivity, if the receiver is not ready to imme-
diately execute a synchronous call, it must be busy servicing
one of the non-blocking calls that stand in the way.

Reactive objects thus alternate between phases of passive
inactivity and temporary outbursts of method execution. In
contrast to so called active objects, a reactive object does
not have a continuous thread of execution; all executable
code of an object is defined in terms of its methods. A
method of a reactive object is furthermore guaranteed to ter-
minate, provided that it does not deadlock or enter an infinite
loop. However, due to the absence of blocking constructs in
this model, the only source of deadlock is the synchronous
method call, and a cyclic chain of such calls is easily de-
tectable at run-time.

The reactive object model has been realized in the lan-
guage Timber that we will survey in the next section. The
model is general enough, though, that we would like to sum-
marize a few informal claims about its properties before we
go into language details.

• Reactive objects is a simple and natural model of event-
driven systems on various level of detail, from hardware
devices to full distributed applications.

• It is a straightforward integration of concurrency and
object-oriented programming, with the added bonus of
automatic protection of state consistency.

• A single reactive object can easily handle input from
multiple asynchronous sources.

• Under assumptions of freedom from non-termination
and a very simple form of detectable deadlock, a re-
active object is also guaranteed to be responsive in all
states.

3 Reactive objects in Timber

We will now give the model of reactive objects a more
concrete form, by showing how it is realized in the pro-
gramming language Timber [4]. Timber is a strongly typed,
object-oriented language with constructs specifically aimed
at real-time programming; however, its foundation in the re-
active object model makes it suitable as a general purpose
language as well. We will introduce Timber by a small pro-
gramming example, after pointing out some distinguishing
details.

• In the syntax of Timber,= denotes a definition,let intro-
duces local definitions,f x y is a functionf applied
to two arguments, and:= is assignment to a state vari-
able.

• Methods have first-class status: they can be passed as
parameters and stored in data structures.

• Commands and declarations are grouped using layout.

Our example is a variant of the program Ping.java from
the New I/O API in Java 1.4. This program demonstrates
how to concurrently measure the time it takes to connect to a
particular TCP port on a number of remote hosts. The Tim-
ber source is shown in Figure 1, and the output of a typical
run looks as follows:

dogbert: 20.018 ms
ratbert: 41.432 ms
ratburg: NetError "lookup failure"
theboss: no response

Ping is implemented as anobject template(i.e., a class).
It is parameterized over a list of hosts and a port number,
and a recordenv that contains methods for interacting with
the environment. Templates define a number of state vari-
ables as well as aninterface, which is typically a record of
methods that the environment can invoke. All methods in

97

ping hosts port env =
template

outstanding := hosts
in let

client host start peer =
record

connect = action
env.putStrLn(host++": "++show(baseline-start))
outstanding := remove host outstanding
peer.close

neterror err = action
env.putStrLn(host++": "++show err)
outstanding := remove host outstanding

deliver pkt = action done
close = action done

cleanup = action
forall h <- outstanding do

env.putStrLn(h++": no response")
env.quit

in record
main = action

forall h <- hosts do
env.inet.tcp.open h port (client h baseline)

after (2*seconds) cleanup

Figure 1. Ping in Timber

this example are asynchronous (as determined by theaction
keyword).

The Ping program is started by creating an instance of the
template, and then invoking itsmain method. Internally,
Ping objects maintain the state variableoutstanding, a
list of hosts from which a response has not been seen. The
main method callsinet.tcp.open of the environment in
order to initiate a TCP connection to the designated port on
every given host (forall expresses a loop construct, withh as
a loop variable). These calls do not wait for the connection to
complete, though; instead, the local methodconnect is set
up to be invoked when the connection has been established.
The recordclient used for this purpose is parameterized
over the host we are trying to connect to, the start time of
the program, and an environment-provided record contain-
ing methods for communicating with the peer host. For tim-
ing purposes, actions can refer to the pre-defined variable
baseline, which is set to the arrival time of the event that
triggered the action.

After all connections have been initiated, the asyn-
chronous methodcleanup is scheduled to be called two
seconds after the baseline ofmain. Note that nowhere does
the execution ofmain block, it just sets up other actions to
react to future events.

All methods of an object can safely manipulate its state
variables in a single-threaded fashion. E.g., it is irrele-
vant here that some methods are defined within the record
client, and others elsewhere. This flexibility allows us
to express a straightforward solution using only one object,
with a single state variable. In contrast, the Java program is
287 lines of code, has ten class variables, and needs three
threads: one for the demultiplexing of connection events,
one for single-threaded printing, and one for timeout.

4 Related work

The reactive object model described in this paper was
first developed for the programming language O’Haskell [7].
The current work is, however, our first attempt to distill
the programming model as a contribution in its own right.
Our language Timber inherits much of its basic design from
O’Haskell, but adds several important features, of which the
notion of a time-constrained reaction is the most relevant to
this paper.

Current work on reactive languages is mostly concerned
with thesynchronousapproach to reactivity [3, 5]. The main
hypotheses made in this model are that computations take
zero time and event delivery is instantaneous. From these as-
sumptions it follows that events received or generated some-
where between two clock ticks are actually occurringsimul-
taneously, and hence, for example, multiple invocations of
a particular method during an instant must be indistinguish-
able from just a single invocation.

The unification of the object and process concepts is an
idea that stems from theActor model [1, 2]. However, the
state of an actor is identified with its current mapping from
names to method bodies, and messages to undefined meth-
ods are simply queued. Hence actors do not possess the re-
sponsiveness property we are emphasizing with our model.
Moreover, the Actor model lacks anything similar to our syn-
chronous methods, and asynchronous message delivery is
not order-preserving.

References

[1] G. Agha.Actors: A Model of Concurrent Computation in Dis-
tributed Systems. MIT Press, 1986.

[2] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foun-
dation for actor computation.Journal of Functional Program-
ming, 7:1–72, 1997.

[3] A. Benveniste and G. Berry. The Synchronous Approach
to Reactive and Real-time Systems. Technical Report 1445,
INRIA-Rennes, 1991.

[4] A. P. Black, M. Carlsson, M. P. Jones, R. Kieburtz, and
J. Nordlander. Timber: A programming language for real-time
embedded systems. http://www.cse.ogi.edu/PacSoft/projects/
Timber/, April 2002.

[5] F. Boussinot, G. Doumenc, and J. Stefani. Reactive Objects.
Annals of Telecommunications, 51(9-10):459–473, 1996.

[6] P. Chan and R. Lee.The Java Class Libraries, Second Edition,
Volume 2. Addison-Wesley, 1997.

[7] J. Nordlander.Reactive Objects and Functional Programming.
PhD thesis, Department of Computer Science, Chalmers Uni-
versity of Technology, G¨oteborg, Sweden, May 1999.

[8] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A Note
on Distributed Computing. Technical Report SMLI TR-94-29,
Sun Microsystems Laboratories, Inc., Nov. 1994.

[9] J. Zukowski. New I/O Functionality for Java 2 Stan-
dard Edition 1.4. http://developer.java.sun.com/developer/
technicalArticles/releases/nio/, October 2001.

98

APPENDIX D

The Semantic Layers of Timber. Magnus Carlsson, Johan Nordlander, and Dick Kieburtz. The

First Asian Symposium on Programming Languages and Systems (APLAS), Beijing, 2003.

Springer-Verlag.

99

http://www.cse.ogi.edu/PacSoft/projects/Timber/aplas.pdf

The semantic layers of Timber

Magnus Carlsson1, Johan Nordlander2, and Dick Kieburtz1

1 Oregon Health & Science University, {magnus,dick}@cse.ogi.edu
2 Lule̊a University of Technology, nordland@sm.luth.se

Abstract. We present a three-layered semantics of Timber, a language
designed for programming real-time systems in a reactive, object-oriented
style. The innermost layer amounts to a traditional deterministic, pure,
functional language, around which we formulate a middle layer of concur-
rent objects, in terms of a monadic transition semantics. The outermost
layer, where the language is married to deadline-driven scheduling the-
ory, is where we define message ordering and CPU allocation to actions.
Our main contributions are a formalized notion of a time-constrained
reaction, and a demonstration of how scheduling theory, process calculii,
and the lambda calculus can be jointly applied to obtain a direct and
succinct semantics of a complex, real-world programming language with
well-defined real-time behavior.

1 Introduction

Timber is a new programming language being developed jointly at the Oregon
Health & Science University, Chalmers University of Technology, and Lule̊a Uni-
versity of Technology. The scope of Timber is wide, ranging from low-level device
interfaces, over time-constrained embedded systems or interactive applications
in general, to very high-level symbolic manipulation and modeling applications.
In the context of this text, the distinguishing attributes of the Timber language
can be summarized as follows:

– It is based on a programming model of reactive objects, that abandons the
traditional active request for input in favor of a purely event-driven program
structure [15].

– It fully integrates concurrency into its semantic foundation, making each
object an encapsulated process whose state integrity is automatically pre-
served.

– It enables real-time constraints to be directly expressed in the source code,
and opens up the possibility of doing off-line deadline-based schedulability
analysis on real code.

– It is a full-fledged pure functional language that achieves referential trans-
parency in the presence of mutable data and non-determinism by means of
a monad.

– It upholds strong static type safety throughout, even for its message-based,
tag-free interprocess communication mechanism.

100

In this paper we provide a formal semantic definition of Timber. The com-
bination of object-based concurrency, asynchronous reactivity, and purely func-
tional declarativeness is challenging in itself, but we believe it is the existence of
a real-time dimension that makes the question of a formal semantics for Timber
particularly interesting. The core of our approach is the definition of a layered
semantics, that separates the semantic concerns in such a way that each layer is
meaningful and can be fully understood by referring to just the layer before it.
The semantic layers of Timber can be summarized as follows:

– The functional layer. This layer amounts to a traditional pure functional
language, similar to Haskell [17] or the pure subset of ML [10]. By pure, we
mean that computations in this layer do not cause any effects related to state
or input/output. We will not discuss this layer very much in this paper, but
instead make sure that the other layers do not interfere with it.

– The reactive layer is a system of concurrent objects with internal state that
react to messages passed from the environment (input), and in turn send
synchronous or asynchronous messages to each other, and back to the en-
vironment (output). This layer constitutes a form of process calculus that
embeds a purely functional sub-language. Although it abstracts away from
the flow of real time, the calculus does associate with each message precise,
but uninterpreted time constraints.

– The scheduling layer. The reactive layer leaves us with a set of messages
and objects with time constraints. Some of the messages may compete for
the same objects, which in turn are competing for computing resources. The
scheduling layer makes precise what the constraints are for the resulting
scheduling problem.

The semantic definition has been used to implement an interpreter for Tim-
ber, by which we have been able to conduct serious practical evaluations of
the language (spanning such diverse areas as GUI toolkit implementation [13]
and embedded robot control [7]). A compiler aimed at stand-alone embedded
systems is also being developed in tandem with the language specification. We
consider the main contributions of this paper to be: (1) a formal definition of
the time-constrained reactions that give Timber its distinct flavor, and (2) a
demonstration of how scheduling theory, process calculii, and the lambda calcu-
lus can be jointly applied to obtain a direct and succinct semantics of a complex,
real-world programming language with well-defined real-time behavior.

The rest of the paper is organized as follows: Section 2 introduces Timber
with an example of an embedded controller. Section 3 constitutes the core of
the paper, as it defines the semantics of Timber in three separate subsections
corresponding to each semantic layer. Related work is then discussed in Section 4,
before we conclude in Section 5.

2 An embedded Timber system

Although Timber is a general-purpose programming language, it has been de-
signed to target embedded systems in particular. The software of such a system,

101

when written in Timber, consists of a number of objects which mostly sit and
wait for incoming events from the physical environment of the embedded sys-
tem. On the lowest level, events are picked up by peripheral devices, and are
transformed into interrupts injected into the CPU. Each interrupt is converted
into an asynchronous message that has one particular object in the Timber pro-
gram as its destination. Each message is associated with a time constraint in the
form of a baseline and a deadline, both of which are absolute times. The baseline
constrains the starting point of a reaction and also functions as a reference point
to which time expressions might subsequently relate; it is normally set to the
absolute time of the interrupt. The deadline is the time by which the system
must have reacted to the event for the system to behave correctly. In the tradi-
tion of declarative programming , this parameter thus acts as a specification for
a correct Timber implementation, ultimately derived from the time constants of
the physical environment with which the system interacts.

Once an interrupt has injected a message into a Timber program, the system
is no longer in an idle state. The message has excited the system, and the desti-
nation object starts reacting to the message so that a response can be delivered.
As a result, the object may alter its state, and send secondary messages to other
objects in the system, some of which may be synchronous. Synchronous com-
munication means that the object will rendezvous with the destination object,
facilitating two-way communication. Some of the secondary messages generated
during the excited state can have baselines and deadlines that are larger than
the original, interrupt-triggered message. For example, a car alarm system may
react immediately to an event from a motion sensor by turning on the alarm,
but also schedule a secondary, delayed reaction that turns off the alarm after
a minute.3 However, eventually the chain reaction caused by an external event
will cling out, and the system goes back to an idle state.

Because a Timber system is concurrent, multiple reactions caused by inde-
pendent external events may be in effect at the same time. It is the job of the
presented semantics to specify how the interactions within such a system are
supposed to behave.

2.1 Templates, actions and requests

The syntax of Timber is strongly influenced by Haskell [17]. In fact, it stems
directly from the object-oriented Haskell extension O’Haskell, and can be seen
as a successor of that language [12].

To describe Timber more concretely, we present a complete Timber program
that implements the car alarm refereed to above in Figure 1. This program is
supposed to run on a naked machine, with no other software than the Tim-
ber program itself. On such a machine, the environment provides merely two
operations, as the definition of the record type Environment indicates: one for
writing a byte to an I/O port, and one for reading. These methods are syn-
chronous, as indicated by the monadic type constructor Request. On the other

3 A delay perceived as much longer than a minute, though!

102

hand, the interface a naked program presents to its environment will merely con-
sist of handlers for (a subset of) the interrupts supported by the hardware. This
is expressed as a list of asynchronous methods (actions) paired with interrupt
numbers, as the type Program prescribes.

A Timber program is a
record Environment where

write :: Port -> Byte -> Request ()

read :: Port -> Request Byte

record Program where
irqvector :: [(Irq,Action)]

alarm :: Environment -> Template Program

alarm env =

template
trigged := True

in let
moved = before (100*milliseconds) action

if trigged then
env.write siren 1

trigged := False

after (1*minutes) turnoff

after (10*minutes) enable

turnoff = action
env.write siren 0

enable = action
trigged := True

in record
irqvector = [(motionsensor,moved)]

Fig. 1. The car alarm program.

function from the program
environment to a template
that returns an interface to
an object. At boot time, the
template alarm will be exe-
cuted, thereby creating one
instance of an alarm handling
object, whose interface is the
desired interrupt vector.

We assume that there is
a particular I/O port siren,
whose least significant bit
controls the car siren, and
that the interrupt number
motionsensor is associated
with the event generated by
a motion sensor on the car.

The definition of alarm
reveals a template for an ob-
ject with one internal state
variable trigged, initialized
to True. The purpose of
trigged, as we will see, is to
ensure that once the alarm
goes off, there will be a grace

period until it is possible to trigger the alarm again.
The returned interrupt vector associates the action moved with the motion

sensor interrupt. When moved is invoked, and if the alarm is trigged, it will turn
on the siren, and set trigger to false. It will also invoke two local asynchronous
methods, each one with a lower time bound on the actual message reception.
The first message, which is scheduled to be handled one minute after the motion
sensor event, simply turns off the siren. The second message, which will arrive
after ten minutes, re-enables the alarm so that it may go off again.

By means of the keyword before, action moved is declared to have a deadline
of one tenth of a second. This means that a correct implementation of the pro-
gram is required to turn on the alarm within 100 milliseconds after the motion
sensor event. This deadline also carries over to the secondary actions, which for
example means that the alarm will shut off no later than one minute and 0.1
seconds after the motion sensor event (and no earlier than one minute after the
event, by the lower time bound).

103

The handling of delays in our example captures a characterizing aspect of
the reactive semantics of

alarm env = do
self <- new True

let moved = act self 〈0,100*milliseconds〉
(do trigged <- get

if trigged then do
env.write sirenport 1

set False

aft (1*minutes) turnoff

aft (10*minutes) enable

else return ())

turnoff = act self 〈0,0〉
(env.write sirenport 0)

enable = act self 〈0,0〉
(set True)

return (record irqs = [(motionsensor,moved)])

Fig. 2. The car alarm program, desugared.

Timber. Instead of tem-
porarily halting execu-
tion at some traditional
”sleep” statement, our
method moved will ter-
minate as quickly as
the CPU allows, leav-
ing the alarm object free
to react to any pend-
ing or subsequent calls
to moved, even while the
1 and 10 minute de-
lay phases are active.
A degraded motion sen-
sor generating bursts of
interrupts will thus be
handled gracefully by

our program; something that would require considerably more work in a lan-
guage where events are queued and event-handling can be arbitrarily delayed.

2.2 The O monad

The Timber con-return:: a -> O s a

(>>=) :: O s a -> (a -> O s b) -> O s b

handle:: O s a -> (Error -> O s a) -> O s a

raise :: Error -> O s a

bef :: Time -> O s a -> O s a

aft :: Time -> O s a -> O s a

set :: s -> O s ()

get :: O s s

new :: s -> O s’ (Ref s)

act :: Ref s -> (Time,Time) -> O s a -> O s’ Msg

abort :: Msg -> O s ()

req :: Ref s -> O s a -> O s’ a

Fig. 3. The constants in the O monad.

structs template,
action, and request
are nothing but
syntactic sugar for
monadic computa-
tions that take place
in the O monad, as
described in [14, 12].
The type O s a stands
for a computation
that can be executed
inside an object
whose local state has

type s, resulting in a value of type a. In the full Timber language, polymorphic
subtyping is applied to give constants that are independent of the local state a
more flexible type (see for example the types Action and Request mentioned
above) [13]. However, we will ignore this issue in the following presentation, as
it has no operational implications.

A desugared version of the alarm program is given in Figure 2. Strictly speak-
ing, the program is not a literate result of the desugaring rules—for readability,
we introduced the do-notation and performed some cosmetic simplifications.

104

The desugared program refers to a number of primitive operations in the O
monad, whose type signature are given in Figure 3. An informal meaning of these
constants can be obtained by comparing the desugared program in Figure 2 with
the original. Their precise formal meaning will be the subject of the next section.
The actual desugaring rules are given in Appendix A.

3 The semantic layers

3.1 The functional layer

We will not specify very much of the functional layer in this presentation; instead
we will view it as a strength of our layered approach that so much of the first
layer can be left unspecified. One of the benefits with a monadic marriage of
effects and evaluation is that it is independent of the evaluation semantics—
this property has even been proposed as the definition of what purely functional
means in the presence of effects [19].

That said, it is also the casereturn e1 >>= e2 7→ e2 e1

raise e1 >>= e2 7→ raise e1

return e1 ‘handle‘ e2 7→ return e1

raise e1 ‘handle‘ e2 7→ e2 e1

bef d′ (act n 〈b, d〉 e) 7→ act n 〈b, d′〉 e
aft b′ (act n 〈b, d〉 e) 7→ act n 〈b′, d〉 e

Fig. 4. Functional layer: reduction rules.

that a lazy semantics in the style
of Haskell adds extra difficulties
to the time and space analysis of
programs, something which is of
increased importance in the con-
struction of real-time and embed-
ded software. For this reason, we
are actually shifting to a strict se-

mantics for Timber, which is a clear breach with the tradition of its predecessors.
Still, strictness should not be confused with impurity, and to underline this dis-
tinction, we will assume a very general semantics that is open to both both lazy
and strict interpretation in this paper. We hope to be able to report on the
specifics of strictness in Timber in later work, especially concerning the treat-
ment of recursive values and imprecise exceptions [4, 11, 8].

We assume that there is a language E of expressions that includes the pure
lambda calculus, and whose semantics is given in terms of a small-step evaluation
relation 7→. Let e range over such expressions. Moreover, we assume that the
expressions of E can be assigned types by means of judgments of the form Γ `
e : τ , where τ ranges over the types of E , and Γ stands for typing assumptions.

A concrete example of what E and 7→ might look like can be found in [12].
There a semantics is described that allows concurrent reduction of all redeces in
an expression, even under a lambda. We will neither assume nor preclude such
a general semantics here, but for the purpose of proving type soundness of the
reaction layer, we require at least the following property:

Theorem 1 (Subject reduction). If Γ ` e : τ and e 7→ e′, then Γ ` e′ : τ .

In order to connect this language with the reactive semantics of the next
section, we extend E with the constants of Figure 3, and the extra evaluation
rules of Figure 4.

105

The first four constants listed in Figure 3 constitute a standard exception-
handling monad, for which meaning is given by the first four rules of Figure 4.
Likewise, the constants bef and aft merely serve to modify the time constraint
argument of the act constant, so their full meaning is also defined in the func-
tional layer.

The remaining constants, however, are treated as uninterpreted constructors
by the functional semantics—it is giving meaning to those constants that is the
purpose of the reactive semantic layer. Similarly, concrete realization of the type
constructors O, Ref and Msg is postponed until the reactive layer is defined; as
far as the functional layer is concerned, O, Ref and Msg are just opaque, abstract
types.

3.2 The reactive layer

To give semantics to the reactive layer, we regard a running Timber program
as a system of concurrent processes, defined by the grammar in Figure 5. A
primitive process is either

– an empty message, tagged with the name m. This is the remnant of a message
that is either delivered or aborted;

– a message tagged with m, carrying the code e, to be executed by an object
with name n, obeying the time constraint c. In the case of a synchronous
message, it also carries a continuation K, which amounts to a suspended
requesting object (see below);

– an idle object with identity n, which maintains its state s awaiting activation
by messages;

– an active object with identity n, state s, executing the code e with the time
constraint c. In case the object is servicing a synchronous request, the con-
tinuation K amounts to the suspended requesting object.

Finally, processes can be com-P ::= 〈〉m Empty message
| 〈n, e, K〉cm Pending message
| (|s|)n Idle object
| (|s, e,K|)c

n Active object
| P ‖ P Parallel composition
| νn.P Restriction

Fig. 5. The process grammar.

posed in parallel, and the scope
of names used for object identities
and message tags can be restricted.
We will assume that parallel com-
position has precedence over the
restriction operator, which there-
fore always extend as far to the
right as possible.

Continuations are requesting objects that are waiting for a request (syn-
chronous message) to finish. Since a requesting object can in turn be servicing
requests from other objects, continuations are defined recursively, according to
the following grammar that denotes a requesting object or an empty continuation:

K ::= (|s,M,K|)n | 0

A requesting object with identity n contains the state s, and a reaction context
M, which is an expression with a hole, waiting to be filled by the result of the

106

request. Just as for normal objects, there is a continuation K as well, in case the
requesting object is servicing a request from another object. For asynchronous
messages, and objects that are not servicing requests, the continuation is empty.

Reaction contexts are used in two ways in the reactive layer. As we have
already seen, they are used in an unsaturated way to denote expressions with
holes in requesting objects. They are also used in the following section to pinpoint
where in an expression the reaction rules operate. Reaction contexts are given
by the grammar

M ::= M >>= e | M ‘handle‘ e | [] .

The structural congruence relation In order for the relation to bring rele-
vant process terms together for the reaction rules given in the next section, we
assume that processes can be rearranged by the structural congruence ≡,

induced by the ele-Associativity P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3

Symmetry P1 ‖ P2 ≡ P2 ‖ P1

Scope extension P1 ‖ νn.P2 ≡ νn.P1 ‖ P2

if n /∈ fv(P1)
Scope commutativity νn.νm.P ≡ νm.νn.P
Renaming νn.P ≡ νm. [m/n]P

if m /∈ fv(P1)
Inert message P ‖ νm.〈〉m ≡ P
Inert object P ‖ νn.(|s|)n ≡ P

Fig. 6. The structural congruence.

ments in Figure 6.
These allow for the
process terms to be
rearranged and re-
named, so that e.g. a
message and its desti-
nation object can be
juxtaposed for the rel-
evant rule to apply.
The last two elements
of the equivalence al-

low us to garbage collect inert objects or messages that cannot possibly interact
with any other process in the system. More specifically, an idle object whose
identity is unknown to the rest of the system cannot possibly receive any mes-
sage. Similarly, an empty message whose tag is “forgotten” can be eliminated.

The reactive relation The reactive layer of our semantics consists of a reaction
relation −→, that defines how objects interact with messages and alter internal
state. The reaction relation is characterized by the axioms shown in Figure 7,
which together with the structural rules in Figure 8 define −→ for general process
terms. Most of the axioms use a reduction context to pinpoint the next relevant
O monad constant inside an active object.

Rules Set and Get allows for the local state of an object to be written or
read. The next three rules introduce a fresh name on the right-hand side by
using restriction, and we tacitly assume here that the names m,n′ do not occur
free in the process term on the left-hand side.

Rule New defines creation a new, idle object whose identity is returned to the
creator, and with an initial state as specified by the argument to the constant
new.

107

Set (|s,M[set e], K|)c
n −→ (|e,M[return ()], K|)c

n

Get (|s,M[get], K|)c
n −→ (|s,M[return s], K|)c

n

New (|s,M[new e], K|)c
n −→ νn′.(|s,M[return n′], K|)c

n ‖ (|e|)n′

Act (|s,M[act n′ d e], K|)c
n −→ νm.(|s,M[return m], K|)c

n ‖ 〈n′, e, 0〉c+d
m

Req (|s,M[req n′ e], K|)c
n −→ νm.〈n′, e, (|s,M, K|)n〉cm

Run (|s|)n ‖ 〈n, e, K〉cm −→ (|s, e, K|)c
n ‖ 〈〉m

Done (|s, r e, 0|)c
n −→ (|s|)n where r ∈ {raise, return}

Rep (|s, r e, (|s′,M, K|)m|)c
n −→ (|s|)n ‖ (|s′,M[r e], K|)c

m

where r ∈ {raise, return}

Abort (|s,M[abort m], K|)c
n ‖ P −→ (|s,M[return ()], K|)c

n ‖ 〈〉m
where P ∈ {〈n′, e, 0〉c′m, 〈〉m}

Fig. 7. Reactive layer: axioms.

In rule Act, an object is sending an asynchronous message with code e to a
destination object n′. The time constraint, or timeline, of a message is computed
by adding the relative time constraint d to the constraint of the sending object.
The addition of time constraints is described in more detail in the section 3.2.
Note that, as a consequence of the substitution-based evaluation semantics we
have assumed, messages contain the actual code to be run by destination objects,
instead of just method names. This should not be confused with breaking the
abstraction barrier of objects, since object interfaces normally expose only action
and request values, not the object identifiers themselves. Without knowledge of
an object’s identity, it is impossible to send arbitrary code to it.

Rule Req forms a synchronous
P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q

P −→ Q
Equiv

P −→ P ′

P ‖ Q −→ P ′ ‖ Q
Par

P −→ P ′

νn.P −→ νn.P ′
Res

Fig. 8. Reactive layer: structural rules.

message, by suspending the re-
questing object and embedding it
as a continuation within the mes-
sage. Here the unsaturated context
M of the caller is saved, so that
it can eventually be filled with the
result of the request. The time con-
straint of a synchronous message is
the same as that of the requesting
object—the intuition here is that a
request is analogous to a function
call, and that servicing such a call

can be neither more nor less urgent than the computation of the caller.

108

In rule Run, an idle object is juxtaposed to a message with matching destina-
tion. The “payload” of the message (the code, continuation and time constraint)
is extracted from the message, which is left empty. This rule forms the essence
of what constitutes a reaction in Timber.

When an active object eventually reaches a terminating state (as represented
by a code expression of the form return e or raise e), the action taken de-
pends on its continuation. Rule Done specifies that an object executing an
asynchronous message just silently enters the idle state, where it will be ready
to accept new messages. An object occupied by a request, on the other hand,
also needs to reply to the requesting object. This is handled in the rule Rep, in
which the waiting caller context M is applied to the reply (which may be an
exception), and the continuation is released as an active object again. At the
same time, the servicing object turns idle, ready for new messages.

The Abort rule shows how a pending message can be turned into an empty
one before delivery, thus effectively removing it from the system. If the des-
tination object has already started executing the message, or if the message
was previously aborted, the rule will match against an empty message instead,
leaving it unaffected.

Finally, there is a rule Eval that connects the functional and reactive layers,
by promoting evaluation to reaction:

s 7→ s′ e 7→ e′

(|s,M[e],K|)c
n −→ (|s′,M[e′],K|)c

n

Eval

Note that we allow for the concurrent evaluation both the state and code com-
ponents of an object here, although with a strict functional layer, the state
component will of course already be a value.

Timeline arithmetic The time constraint, or timeline, of an asynchronous
message is obtained by adding the time constraint 〈b, d〉 of the sending object
to the relative timeline 〈β, δ〉 supplied to the constructor act. This operation is
defined as follows:

〈b, d〉+ 〈β, δ〉 = 〈max(b, b + β), max(d, b + β + δ)〉 if δ > 0
= 〈max(b, b + β), max(d, d + β)〉 if δ ≤ 0

The maximum functions used here serve to ensure that the timeline of a message
cannot be tighter than the timeline of the sending object; i.e., both the baseline
and the deadline of a message must be at least as large as those of the sender. This
prevents the introduction of paradoxical situations where servicing a secondary
reaction would be more urgent than executing the code that caused it.

As can be seen, a special case occurs when the relative deadline of a message
is zero or below; then the deadline of the sender is kept but interpreted relative
to the new baseline. This is how the two delayed messages sent in the moved
method in Figure 2 are assigned their deadlines of 1 minute + 100 milliseconds,
and 10 minutes + 100 milliseconds, respectively.

109

Note that this exception is added purely for the convenience of the program-
mer, who would otherwise always have to specify an explicit deadline whenever
a new baseline is given. Note also that a relative deadline of zero amounts to
a timeline that cannot be satisfied by any kind of finite computing resource,
so an exception for this value does not really limit the expressiveness for the
programmer.

Deadlock A Timber program that only uses asynchronous communication is
guaranteed to be free from deadlock; however, since the sender of a synchronous
message is unresponsive while it waits for a reply, the potential of deadlock arises.
On the other hand, unlike many other languages and interprocess communica-
tion mechanisms, Timber allows for really cheap detection of deadlock. What is
required is that each object keeps a pointer to the servicing object as long as it
is blocked in a request, and that that the req operation starts by checking that
setting up such a pointer will not result in cycle. If this is indeed the case, req
results in an exception.

Preferably, our reaction semantics should formalize this behavior, as it is of
utmost importance for the correctness of systems in which deadlock can occur.
Unfortunately, our recursive definition of continuations actually denotes a linked
structure that points in the other direction; from a server to its current client, if
any. Duplicating this structure with links going in the forward direction makes
the reaction axioms look extremely clumsy, and we have not found the formal
definition of deadlock detection valuable enough to outweigh its cost. Instead we
supplement the reaction axioms of Figure 7 with an informal rule that reads

(|s,M[req n′ e],K|)c
n −→ (|s,M[raise Deadlock],K|)c

n

if the sending object n is found by following the forward pointers starting at n′.
It is our hope that a neater way of specifying this behavior can eventually be
developed.

Properties of the reactive layer Analogous to the subject reduction prop-
erty that we assume for the functional layer, we establish what we may call a
subject reaction property for our process calculus; i.e., the property that all re-
action rules preserve well typedness of processes. Well-typedness is defined by
the straightforward typing judgments of Appendix B, and the subject reaction
theorem looks as follows:

Theorem 2 (Subject Reaction). If Γ ` P well-typed and P −→ Q, then
Γ ` Q well-typed

An attractive property of our layered semantics is that reduction and reaction
live in independent worlds. There are no side effects in the functional layer, its
only role is to enable rules in the deterministic layer, and further reduction
cannot retract any choices already enabled. This can be captured in a diamond
property that we call functional soundness, which says that the 7→ and −→
relations commute.

110

Let −→
Eval

be the relation formed by the structural rules in Figure 8 and rule
Eval, but none of the axioms in Figure 7. Let −→¬Eval

be the reaction relation
formed by including the structural rules and the axioms, but not rule Eval.

Theorem 3 (Functional soundness). If P −→¬Eval
Q and P −→

Eval
P ′, then there

is a Q′ such that P ′ −→¬Eval
Q′ and Q −→

Eval
Q′.

The reader is referred to [12] for more elaboration and proofs of the above
properties.

3.3 The scheduling layer

The reactive layer leaves us with a system that is highly non-deterministic—it
says nothing about in which order objects should run messages, or in which
order concurrently active objects may progress. The scheduling layer puts some
extra constraints on the system, by consulting the hitherto uninterpreted time
constraints attached to messages and objects. The requirements on the scheduler
are formulated in terms of a real-time trace.

Definition 1 (Real-time trace). A real-time transition is a transition P −→
Q associated with a value t of some totally ordered time domain, written P

t−→
Q. A real-time trace T is a possibly infinite sequence of real-time transitions
Pi

ti−→ Pi+1 such that ti < ti+1. We call each Pi in a real-time trace a trace
state.

A real-time trace thus represents the execution of a Timber program on some
specific machine, with machine-specific real-time behavior embedded in the ti.
Our first goal is to define which real-time behaviors are acceptable with respect
to the time-constraints of a program.

Definition 2 (Transition timeline). Let the timeline of a reaction axiom be
the pair c as it occurs in the reaction rules of Figure 7, and let the timeline of
a structural reaction rule be the timeline of its single reaction premise. We now
define the timeline of a transition P

t−→ Q as the timeline of the rule used to
derive P −→ Q.

This definition leads to the notion of timeliness:

Definition 3 (Timeliness). A real-time transition P
t−→ Q with timeline

〈b, d〉 is timely iff b ≤ t ≤ d. A real-time trace T is timely iff every transition in
T is timely.

Our second goal is to constrain the dispatching of messages to occur in pri-
ority order. First we need to formalize the notion of a dispatch:

Definition 4 (Dispatch). A dispatch from T is a real-time transition P
t−→

P ′ derived from rule Run, such that P is the final trace state of T . An (n,Q)-
dispatch from T is a dispatch from T where n is the name of the activated object,
and Q is the dispatched message.

111

The intention is that whenever there are several possible dispatches from some
T , the semantics should prescribe which one is chosen. To this end we will need
to define an ordering relation between messages.

First, we let timelines be sorted primarily according to their deadlines.

Definition 5 (Timeline ordering). 〈b, d〉 < 〈b, d〉 iff d < d′, or d = d′ and
b < b′.

Second, we want to induce an ordering on messages whose timelines are identical.
We will assume, without loss of generality, that ν-bound names are chosen to be
unique in a trace state, and that the renaming congruence rule is never applied
in an Equiv transition. This makes it possible to uniquely determine the time
when a bound name appears in a trace.

Definition 6 (Binding times). The binding time bt(n, T) of a name n in
a real-time trace T is the largest time ti associated with a real-time transition
Pi

ti−→ Pi+1 in T , such that Pi+1 contains a ν-binder for n but Pi does not.

From the previous two definitions we can construct a partial order on pending
messages.

Definition 7 (Message ordering). 〈n, e, K〉cm <T 〈n, e′,K ′〉c′m′ iff c < c′, or
c = c′ and bt(m, T) < bt(m′, T)

Note that this definition only relates messages aimed for some particular object,
and that these messages are actually totally ordered.

From the ordering of messages follows the notion of a minimal dispatch.

Definition 8 (Minimal dispatch). An (n, Q)-dispatch from T is minimal iff,
for all possible (n,Q′)-dispatches from T , Q <T Q′. A dispatch from T is mini-
mal if it is a minimal (n,Q)-dispatch from T for some n and Q.

Finally, the timeliness and minimality constraints can be applied to real-time
traces in order to identify the valid ones.

Definition 9 (Valid trace). A real-time trace T is valid iff T is timely and
every dispatch from a prefix T ′ of T is minimal.

The real-time semantics of a Timber program is thus the set of valid traces it
generates.

Some notes regarding these definitions:

1. The notion of minimality makes message dispatching fully deterministic.
What the semantics prescribes is actually a priority queue of messages for
each object, that resorts to FIFO order when priorities (timelines) are iden-
tical. This is also how our Timber compiler implements the semantics. Our
reasons for defining message queuing here and not in the reactive layer are
twofold: First, the complexity that arises from maintaining explicit queues
in the process calculus is daunting. Second, leaving out ordering concerns is
more in line with the process calculus tradition, and allows for easier com-
parison between Timber and other languages based on similar formalisms,
like Concurrent Haskell.

112

2. All scheduling flexibility is captured in the selection of which object to run—
because message order is fixed, the reaction axioms of Figure 7 do not offer
any flexibility in choosing the next transition for a particular object. On the
other hand, whenever there are several objects capable of making a timely
transition, the semantics allows any one of them to be chosen. This opens
up for pre-emptive scheduling, and coincides with our intuition that objects
execute in parallel, but are internally sequential.

3. It follows from the monotonicity of real time that if a dispatch meets the
baseline constraint of its timeliness requirement, all transitions involving the
same object up to its next idle state will also meet the baseline constraint.
Likewise, if an object becomes idle by means of a Done or Rep transition
that meets its deadline, all transitions involving this object since it was last
idle must also have met this deadline.

4. Meeting the baseline constraint of a dispatch is always feasible; it just
amounts to refraining from making a certain transition. This can easily be
implemented by putting messages on hold in a system-wide timer queue
until their baselines have passed. On the other hand, meeting a deadline
constraint is always going to be a fight against time and finite resources.
Statically determining whether the execution of a Timber program will give
rise to a valid trace in this respect is in general infeasible; however, we note
that scheduling theory and feasibility analysis is available for attacking this
problem, at least for a restricted set of Timber programs.

5. It can be argued that a Timber implementation should be able to continue
execution, even if the deadline constraint of the timeliness requirement can-
not be met for some part of its trace. Indeed, this is also what our Timber
compiler currently does. However, it is not clear what the best way of achiev-
ing deadline fault tolerance would be, so we take the conservative route and
let the Timber semantics specify only the desired program behavior at this
stage.

On a uni-processor system, the scheduling problems generated by our se-
mantics bear an attractively close resemblance to the problems addressed by
deadline-based scheduling theory [21]. In fact, the well-known optimality result
for fully preemptive Earliest-Deadline-First scheduling [3] can be directly recast
to the Timber setting as follows:

Theorem 4 (Optimality of EDF). For a given real-time trace, let the exe-
cution time attributed to a transition only depend on the reaction axiom from
which the transition is derived. Moreover, let a re-ordering of the trace be the
result of repeatedly applying the equivalence P ‖ Q −→ P ′ ‖ Q −→ P ′ ‖ Q′ ≡
P ‖ Q −→ P ‖ Q′ −→ P ′ ‖ Q′ (structurally lifted to transitions).

Then, if there exists a re-ordering of transitions that results in a timely trace,
re-ordering the transitions according to the principle of EDF will also result in
a timely trace.

It is our intention to study this correspondence in considerable more detail,
especially how the presence of baseline constraints affects existing feasibility

113

theory. However, it should also be noted that the scheduling layer semantics
does not prescribe EDF scheduling. In particular, static schedules produced by
off-line simulations of a program is an interesting alternative we are also looking
into [9].

4 Related work

The actions in Timber resemble the tasks in the E machine [5], where the pro-
grammer can specify that a reaction to an event should be delivered precisely
at a certain point in time. Consequently, the output of a task will be queued
until it is time to react, and the E machine becomes a deterministic system, in
sharp contrast to Timber. Similarly, the language H [22] is a Haskell-like lan-
guage where functions over timestamped messages are interconnected through
ports. For an input message, a timestamp indicates the time of an event, and for
output, it specifies exactly when the message should be output from the system.

In the synchronous programming school (Esterel, Signal, Lustre), programs
are usually conducted by one or more periodic clocks, and computations are as-
sumed to terminate within a clock period [2]. In contrast, Timber does not make
any assumptions about periodic behavior, even though it shares the concept of
reactivity with the synchronous languages.

The UDP Calculus [20, 25] provides a formalism for expressing detailed be-
havior of distributed systems that communicate via the UDP protocol. Part of
the structure of our process calculus can be found in the UDP Calculus as well;
for example the representation of hosts (objects) as process terms tagged with
unique names, and the modelling of messages as free-floating terms in their own
right. The UDP Calculus has a basic notion of time constraints in the shape of
terms annotated with timers, although at present this facility is only meant to
model message propagation delays and timeout options. Moreover, the focus on
actual UDP implementations in existing operating systems makes the UDP Cal-
culus more narrow in scope than Timber, but also significantly more complex:
the number of transition axioms in the UDP Calculus is 78, for example, where
we get away with about 10.

The language Hume [18] has similar design motives as Timber: it has asyn-
chronous, concurrent processes, is based on a pure functional core, and targets
embedded, time-critical systems. However, Hume is an example of languages
that identify the concept of real time with bounds on resources, not with means
for specifying time constraints for the delivery of reactions to events. Apart from
Hume, this group of languages also include Real-Time FRP and Embedded ML
[24, 6].

On a historical note, Embedded Gofer [23] is an extension to a Haskell pre-
cursor Haskell aimed at supporting embedded systems. It has an incremental
garbage collector, and direct access to interrupts and I/O ports, but lacks any
internal notion of time. The same can also be said for Erlang [1]. Although it
has been successfully applied in large real-time telecom switching systems, it

114

only provides best-effort, fixed-priority scheduling, and lacks a static type-safety
property.

The technique of separating a semantics into a purely functional layer and
an effectful process calculus layer has been used in the definition of Concurrent
Haskell [16] and O’Haskell [14]. Although it is well known that a functional
language can be encoded in process calculii, such an encoding would obscure the
semantic stratification we wish to emphasize.

5 Conclusions and future work

We have given a semantics for Timber, stratified into independent layers for
functional evaluation, object and message reactions, and time-sensitive schedul-
ing. The language is implemented in terms of an full-featured interpreter, and we
are currently developing a compiler that generates C code for targeting embed-
ded systems. In the near future, we plan to apply and implement deadline-based
scheduling analysis techniques for Timber, and nail down the specifics of shifting
to a strict semantics in the functional layer.

6 Acknowledgments

The design of the Timber language has been influenced by contributions by
many people within the Timber group at OHSU; Iavor Diatchki and Mark Jones
in particular have been active in the development of Timber’s time-constrained
reactions. We would also like to thank members of the PacSoft research group
at OHSU for valuable feedback, notably Thomas Hallgren.

References

1. J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Program-
ming in Erlang. Prentice Hall, 1996.

2. A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and R. de
Simone. The synchronous languages 12 years later. Proceedings of the IEEE, 91(1),
January 2003.

3. M. Dertouzos. Control Robotics: the Procedural Control of Physical Processes.
Information Processing, 74, 1974.

4. L. Erkök and J. Launchbury. Recursive monadic bindings. In Proceedings of
the Fifth ACM SIGPLAN International Conference on Functional Programming,
ICFP’00, pages 174–185. ACM Press, September 2000.

5. T. A. Henzinger and C. M. Kirsch. The embedded machine: Predictable, portable
real-time code. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2002.

6. J. Hughes and L. Pareto. Recursion and dynamic data-structures in bounded space:
Towards embedded ML programming. In International Conference on Functional
Programming, pages 70–81, 1999.

115

7. M. P. Jones, M. Carlsson, and J. Nordlander. Composed, and in con-
trol: Programming the Timber robot. http://www.cse.ogi.edu/~mpj/timbot/

ComposedAndInControl.pdf, 2002.

8. S. L. P. Jones, A. Reid, F. Henderson, C. A. R. Hoare, and S. Marlow. A semantics
for imprecise exceptions. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 25–36, 1999.

9. R. Kieburtz. Real-time reactive programming for embedded controllers.
ftp://cse.ogi.edu/pub/pacsoft/papers/timed.ps, 2001.

10. R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press,
1990.

11. E. Moggi and A. Sabry. An abstract monadic semantics for value recursion. In
Workshop on Fixed Points in Computer Science, 2003.

12. J. Nordlander. Reactive Objects and Functional Programming. Phd thesis, De-
partment of Computer Science, Chalmers University of Technology, Gothenburg,
1999.

13. J. Nordlander. Polymorphic subtyping in O’Haskell. Science of Computer Pro-
gramming, 43(2-3), 2002.

14. J. Nordlander and M. Carlsson. Reactive Objects in a Functional Language – An
escape from the evil “I”. In Proceedings of the Haskell Workshop, Amsterdam,
Holland, 1997.

15. J. Nordlander, M. Jones, M. Carlsson, D. Kieburtz, and A. Black. Reactive ob-
jects. In The Fifth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2002), 2002.

16. S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In ACM Principles
of Programming Languages, pages 295–308, St Petersburg, FL, Jan. 1996. ACM
Press.

17. S. Peyton Jones et al. Report on the programming language Haskell 98, a non-
strict, purely functional language. http://haskell.org, February 1999.

18. A. Rebón Portillo, K. Hammond, H.-W. Loidl, and P. Vasconcelos. Granularity
analysis using automatic size and time cost inference. In Proceedings of IFL ’02—
Implementation of Functional Languages. Springer Verlag, September 2002.

19. A. Sabry. What is a Purely Functional Language? Journal of Functional Program-
ming, 8(1):1–22, 1998.

20. A. Serjantov, P. Sewell, and K. Wansbrough. The UDP Calculus: Rigorous Se-
mantics for Real Networking. In Theoretical Aspects of Computer Software, 4th
International Symposium, TACS 2001, Sendai, Japan, Oct 2001.

21. J. Stankovich, editor. Deadline Scheduling for Real-time Systems, EDF and Related
Algorithms. Kluwer, 1998.

22. S. Truvé. A new H for real-time programming. http://www.cs.chalmers.se/

~truve/NewH.ps.

23. M. Wallace and C. Runciman. Lambdas in the liftshaft - functional program-
ming and an embedded architecture. In Functional Programming Languages and
Computer Architecture, pages 249–258, 1995.

24. Z. Wan, W. Taha, and P. Hudak. Real-time FRP. In International Conference on
Functional Programming (ICFP ’01), Florence, Italy, September 2001.

25. K. Wansbrough, M. Norrish, P. Sewell, and A. Serjantov. Timing UDP: mecha-
nized semantics for sockets, threads and failures. In 11th European Symposium on
Programming, ESOP 2002, Grenoble, France, April 2002.

116

A Desugaring

Jdo cKv = J[c]Kv
Jdo p <- e; csKv = J[e]Kv >>= \ p -> Jdo csKv

Jdo c; csKv = J[c]Kv >> Jdo csKv
Jdo let ds; csKv = Jlet ds in do csKv

Jtemplate as in eKv =
s

do self <- new es
return e

{

v′

where
{

v′ = [x | x := e ← as]
es = [e | x := e ← as]

Jaction csKv = act self 〈0, 0〉 Jdo csKv
Jrequest csKv = req self Jdo csKv

JbeforeKv = bef
JafterKv = aft

J[p := e]Kv = J[set ((\ p -> v) e)]Kv
if fv(p) ⊆ v

J[e]Kv = get >>= \ v -> JeKv
if fv(e) ∩ v 6= ∅

J[e]Kv = JeKv
otherwise

B Well-typed processes

Typing judgments for processes and continuations are given below. τ Ã is the
type of a continuation waiting for a reply of type τ . Reduction contexts are given
function types, treating their hole as a normal, abstracted variable.

Γ ` n : Ref ρ Γ ` e : O ρ τ
Γ ` K : τ Ã Γ ` c : (Time,Time) Γ ` m : Msg

Γ ` 〈n, e, K〉cm well-typed
Pending

Γ ` s : ρ Γ ` e : O ρ τ
Γ ` K : τ Ã Γ ` c : (Time,Time) Γ ` n : Ref ρ

Γ ` (|s, e,K|)c
n well-typed

Active

Γ ` m : Msg
Γ ` 〈〉m well-typed

Empty
Γ ` s : ρ Γ ` n : Ref ρ

Γ ` (|s|)n well-typed
Idle

Γ ` P well-typed Γ ` P ′ well-typed
Γ ` P ‖ P ′ well-typed

Parallel

Γ, n : τ ` P well-typed
Γ ` νn.P well-typed

Restriction

Γ ` s : ρ Γ ` M : τ → O ρ σ Γ ` K : σ Ã Γ ` n : Ref ρ

Γ ` (|s,M,K|)n : τ Ã Cont

Γ ` 0 : τ Ã EmptyCont
Γ, [] : τ ` M[] : O σ ρ

Γ ` M : τ → O σ ρ
Context

117

APPENDIX E

Programming with Time-Constrained Reactions. Johan Nordlander, Magnus Carlsson, and

Mark Jones. Submitted for publication, April 2004.

118

http://www.cse.ogi.edu/PacSoft/projects/Timber/timed.pdf

Programming with Time-Constrained Reactions

Johan Nordlander
Luleå University of Technology

nordland@csee.ltu.se

Magnus Carlsson∗

magnus@carlssonia.org
Mark P. Jones

Oregon Health & Science
University

mpj@cse.ogi.edu

ABSTRACT
In this paper we argue that a programming language for
real-time systems should support the declaration of time-
constraints, and that those constraints should attach to a
well-developed notion of reactions. To make our claims
more precise, we introduce Timber, which is a concurrent
programming language based on a model of non-blocking,
reactive objects. Timber supports both upper and lower
time constraints on a reaction, where an upper constraint
corresponds to a classical deadline, and a lower constraint
constitutes a very efficient way of scheduling an event to
occur at a well-defined point in the future. A series of pro-
gramming examples illustrates how these mechanisms can
be used to express simple solutions to common problems in
practical real-time programming.

1. INTRODUCTION
Look up just about any definition of the term real-time sys-
tem, and it is bound to be based on some variant of the
notion of ”meeting a deadline”. The exact wordings will of
course vary, but there is little controversy in saying that in
the problem domain of real-time systems, in particular the so
called hard ones, the deadline concept plays a fundamental
role.

It is therefore rather surprising that the real-time solution
domain — by which we mean real-time operating systems,
languages, middleware, etc — is frequently free from any
references to deadlines. This is indeed a paradox, but it is
a widely accepted one; its basis is a common understanding
that deadline-driven approaches are yet not mature enough
to be applied in anything but perhaps abstract system mod-
els. The real-time system designer is thus presented with
a semantic gap to cross: what the problem domain refers
to as events, reactions, and deadlines must be mapped onto
the threads, synchronization points and static priorities that
have long dominated real-time system implementation prac-
tice. It is no exaggeration to claim that bridging this gap
is one of the major challenges that face anyone involved in
real-time system design.

This paper takes as its starting point the observation that
our common programming languages play a fundamental
role in the mismatch between real-time programming prac-
tice and its problem domain. Specifically, we note that a
major reason why deadlines cannot be comfortably handled

∗The work was carried out while the author was at Oregon
Health & Science University.

in these languages is simply that the corresponding notions
of events and reactions are cumbersome to express as well.
The cause can be found in the I/O model that underlies
modern languages, which presupposes that event handling
is an internal affair of the operating system, and that the
best way of interfacing an application to the real world is by
means of ”services” that silently block execution whenever
the world is out of sync. What the programmer at best can
hope for is some middleware abstraction that provides an
encoded notion of events, and perhaps a design pattern that
gives the ramifications of how reactions to events must be
coded in order to fit the framework. By necessity, the pos-
sibilities of maintaining a deadline-oriented view of such a
real-time system — from its specification, via an implemen-
tation, down to the actual scheduling of code at run-time —
are limited.

For an analogy, consider the prospect of maintaining the
type safety of function calls in a language that lacks any no-
tion of types as well as functions! Few people would argue
that such an arrangement is the best way of promoting the
idea of type-correct programming. It is the core message of
this paper that the issue of real-time correctness can, and
should, be addressed from a programming language perspec-
tive with the same level of interest as type-correctness has
received in the past.

In previous work we have described the event-driven reactive
objects programming model that forms the basis upon which
our real-time programming language Timber is built [10].
The key aspect of the reactive objects model is that events
and reactions are unified with messages and methods, re-
spectively, and that methods are non-blocking by construc-
tion. The present paper extends this work by the following
contributions:

• We provide a detailed definition of and motivation
for the time-constrained reactions that give Timber its
unique character.

• The pragmatics of programming real-time systems in
Timber is illustrated in a series of archetypical exam-
ples.

The perspective taken in this paper is that of the working
real-time programmer with an interest in language design
and programming models. The formal semantics of Timber,
which is of primary interest to language implementors and

1

119

scheduling theoreticians, is defined elsewhere [3]. A third,
more application-oriented view of Timber is presented in a
companion paper, where the implementation of components
for robot control is described [8].

The rest of this paper is organized as follows. In section 2 we
review the reactive objects model of Timber, and introduce
the reader to the basic structure of the language. Section 3
defines the notion of time-constraints in Timber, and shows
the basic constructs by which the programmer can control
the timing behavior of a Timber system. Then follows a sec-
tion that exemplifies the use of time-constraints in practice
(section 4). Some related approaches are reviewed in section
6, while section 7 concludes with some pointers towards fu-
ture work.

2. BACKGROUND
2.1 Reactivity
The idea that the primary role of a computer in its environ-
ment is to react to events is by no means new, it has been
around in various forms since the dawn of computers more
than half a century ago. Constructors of embedded systems
in particular have no problems embracing this view, as it
clearly emphasizes the computer as a sub-component of a
more diverse and general system.

The reactive view is however dwarfed by the much more
persistent idea that a computer is the active part, and any
equipment with which it may need to interact primarily ex-
ist as sub-components of the computing system. This view
certainly holds for the large class of external devices that
deal with data storage; for example, hard disks, RAM mem-
ory, card readers, and line printers. Born within the batch-
oriented era of computing, the active, computer-centric per-
spective naturally leads to the idea of synchronization by
transparently blocking input operations, dressed up as sub-
routines.

Of course, treating interactive users, physical processes, or
the internet as mere sub-components of a particular com-
puter is not viable, but neither were such systems commonly
connected to computers when batch-oriented computing was
the rule. Unfortunately, modern programming languages
prevail in upholding the batch-oriented view of the world
when it comes to environment interaction, something which,
for example, manifests itself in the common modeling of in-
put devices as data files.

The result is that in order to implement real event-driven
applications, the programmer has to go to some length in es-
tablishing a reactive program structure out of the suggested
active programming model. As an illustration, consider the
typical top-level event loop structure that forms the core of
nearly every modern interactive application. An outline of
the event-loop pattern is shown in Figure 1. The goal of this
pattern is to enable the core parts of an application to be
written as a set of event handlers that are called when an
event occurs. In order to achieve this, however, the calls to
the blocking event delivery service of the operating system
(tentatively called GetNextEvent in this example) must be
centralized to a top-level dispatch loop, with the implicit
side-condition that none of the event-handling subroutines
make any call to this function, or to any indefinitely blocking

KeybdHandler() {
. . .

}

MouseHandler() {
. . .

}

while (1) {
switch (GetNextEvent()) {

case KEYBD : KeybdHandler();
case MOUSE : MouseHandler();
. . .
}
}

--
--

--
--

--
--

��

����������

GG

Figure 1:

service general. Thus, the role of the event-loop pattern is to
convert the active compute-until-something-happens style of
the operating system service into the passive call-me-when-
something-happens style of the application.

Event-loops are so common in event-driven programming
that many people consider the notions synonymous, despite
the inherent weaknesses of the event-loop pattern: (1) oper-
ating system dependency and limited extensibility, (2) brit-
tleness in presence of changes that break the blocking/non-
blocking invariants, and (3) unclear interaction with concur-
rency. Moreover, the packaging of real-world events as the
result of a transparently blocking operating system service is
likely to be questioned by very few. Still, there is a backside
to the event-loop pattern hidden inside the implementation
of such an service, that has high relevance in a discussion
on the structure of event-driven programs.

Consider the extended software outline shown in Figure 2.
Here we have complemented the application event-loop with
parts of the operating system as well, in order to illustrate
the path an event takes from the initial hardware interrupt
to the designated event handler. The main job of the operat-
ing system is here to use scheduling to implement blocking of
the application, on basis of data generated by the low-level
interrupt handlers. A key technicality is the need for some
asynchronous signaling mechanism, that decouples the exe-
cution of the interrupt handlers from the rest of the system.
Notice that the effort of the application to switch polarity
of an active event service into a reactive program structure
is mirrored within the operating system, as a mechanism for
converting the reactive nature of interrupt handling into an
actively blocking operation!

The irony is that so much operating system effort goes into
establishing the batch-oriented ideal of transparently block-
ing subroutines, when the reactive programmer subsequently
will have to work hard in order to predict, control and avoid
this very feature. The question that has spurred the develop-

2

120

OS

{{{{{{{{{{{{{{{}}

blocking
IRQ

KeybdIRQ() {
. . .

}
//

$$
$$
$$
$$
$

��

async

IRQ
MouseIRQ() {

. . .
}

//

���������

MM

async

KeybdHandler() {
. . .

}

MouseHandler() {
. . .

}

while (1) {
switch (GetNextEvent()) {

case KEYBD : KeybdHandler();
case MOUSE : MouseHandler();
. . .
}
}

--
--

--
--

--
--

��

����������

GG

Figure 2:

IRQ
KeybdIRQ() {

. . .
}

//
KeybdHandler() {

. . .
}

//
async

IRQ
MouseIRQ() {

. . .
}

//
MouseHandler() {

. . .
}

//
async

Figure 3:

IRQ
async //

KeybdHandler() {
. . .

}

IRQ
async //

MouseHandler() {
. . .

}

Figure 4:

ment of Timber and its programming model may seem obvi-
ous in this context: Why can’t we simply bypass the double
switching of polarities in traditional event-driven program-
ming, and pipe the internal asynchronous signals of the op-
erating system directly to the corresponding event handlers?
A sketch of a reactive program structure along those lines is
shown in Figure 3. Indeed, by modeling interrupt requests
as asynchronous signals to begin with, one could even go
one step further, as in Figure 4.

2.2 Reactive objects
Of course, the real issues in a move that bypasses the operat-
ing system must concern the semantics of the intended pro-
gramming language, especially regarding concurrency and
global state management. Ada and RT Java are both exam-
ples of concurrent languages with abilities to run programs
on bare metal CPUs; however, both these languages presup-
pose that their run-time systems take over the operating sys-
tem role of implementing indefinite blocking. Other, more
experimental languages exist that take on a higher level view
of interaction, but their programming models are often too
far removed from the perspective of the embedded systems
programmer (see Section ?? for some further discussion).

The Timber approach has been to leverage on the object-
oriented paradigm, in order to achieve a concurrent pro-
gramming model that lies very close to what is already
familiar to anyone acquainted with event-driven program-
ming. Thus, the reactive objects semantics of Timber is a
model where

• Each object is independent; that is, method execu-
tion in one object is implicitly concurrent with activity
in other objects.

• State is local and protected; that is, each piece of
program state belongs to some particular object, which
is the only entity that can read and modify its value.

3

121

IRQ

local state
�� �

�	
�

mutually
exclusive
methods

//async

IRQ

local state
�� �

�	
�

mutually
exclusive
methods

//async

Figure 5:

IRQ

local state
�� �

�	
�

mutually
exclusive
methods

TTTTTTTTTTTTTTT

))

async

IRQ

ggggggggggggggg

33async

state protection

Figure 6:

Furthermore, object state cannot be concurrently ac-
cessed, as the execution of methods of a particular
object is mutually exclusive.

• Method execution is non-blocking; that is, there
is no way for a method to halt execution midway, wait-
ing for a future event. Events are uniformly inter-
preted as method calls, and in the absence of diverg-
ing calculations, each method will eventually termi-
nate and return its object to a resting state.

We illustrate the impact of these characteristics by contin-
uing our event-driven example from above. In Figure 5 the
two objects can handle their respective interrupt signals in
any interleaving, as they only have access to their own pri-
vate parts of the program state. The enforced non-blocking
nature of methods also coincides very well with the informal
requirements that usually constrain both low-level interrupt
handlers and more general handlers of event-driven frame-
works.

Figure 6 illustrates the case where two handlers share their
state. This is expressed in the reactive objects model by let-
ting the handler methods be part of the same object, which
then guarantees that their executions will not be interleaved.
The underlying asynchronous message mechanism of each
object captures both any interrupt queuing facilities offered
by some hardware, and the event queues normally found on
a per program basis inside operating systems.

implicit concurrency
no blocking

state protection

local state
�� �

�	
�

mutually
exclusive
methods

IRQ

local state
�� �

�	
�

mutually
exclusive
methods

//async

PPPPPPPPPPPPPPPPP

((

async

IRQ

local state
�� �

�	
�

mutually
exclusive
methods

//async

kkkkkkkkkkkkkkkkk

55

async

Figure 7:

bb eebb
::

bbbbbbbbbbb 11

eeeeeeeeeee
22

ccccccc 11

88
88

88

�� bbbbbbbbbbbbbb
00 //

//
::

::
::

::

��

//

//

//

Figure 8:

4

122

In Figure 7, the possibilities of event-handling using a com-
bination of objects is exemplified. The two leftmost objects
in the figure are able to handle events concurrently, while
handling of the secondary events in the right object will be
serialized. What we see here is the beginning of a program
structure set up to handle more complex tasks. An even
more general case is shown in Figure 8, where each gray
box may be a single object, or a compound structure of the
same kind as the whole figure itself. The important charac-
teristic is that the arrows represent message-based commu-
nication both in the object-oriented and in the concurrent
programming sense, and that the nodes stand for a system
partitioning according to state as well as control.

In general, a structure of reactive objects connects a set of
input events to a set of output events, where the definition
of the nodes determine how an individual input event prop-
agates through the graph and modifies its state. At the
hardware/software boundary, the input events correspond
to interrupts, and output events are denoted by device reg-
ister accesses. The model is however equally applicable to
any level of software component abstraction, as well as to
communicating systems in general, of an arbitrary scale.

2.3 Timber
With Timber we concretize the reactive objects model in a
programming language that is further characterized by

• Synchronous as well as asynchronous communication.

• First-class methods and object generators.

• Strong type safety.

• A syntax and so called monadic semantics influenced
by functional languages.

Here we will just briefly overview the constructs of Timber
that are most relevant to the rest of the paper. For a more
complete account, we refer to the draft language report [2]
and the formal semantics definition [3].

On the top level, a Timber program is a set of bindings
of names to expressions, of which some may be templates,
which is the Timber term for object generators (i.e., classical
classes). In concrete Timber syntax, a generator of simple
counter objects can be defined as follows:

counter = template
value := 0
return
{ read = request

return value
incr = action

value := value + 1 }

This definition reveals that counter objects consist of a local
state variable value initialized to 0, and a public interface
with methods for reading and incrementing the state. The
interface is a record in this case, but can in principle be any
data structure. However, interfaces need to contain at least
one method in order to be practically useful.

Methods are of two kinds: actions that imply asynchronous
communication, and requests for expressing synchronous ren-
dezvous. The general forms for method and template ex-
pressions are

action
statements

request
statements

template
statements

where each statement is basically either an assignment to
local state, a template instantiation, or (with the exception
of template expressions) an asynchronous or synchronous
method call. The usual selection of looping and branching
constructs is also available, as well as a statement that in-
troduces local bindings:

let
test env = action

c ← counter
c.incr
c.incr
n ← c.read
env .putStr (show n)

This example says that test is an asynchronous method
which instantiates a counter object, increments it twice,
reads its current value, and prints a string representation
of the value to any object supplied as the parameter env .
The ← syntax introduces a local name for the result of a
side-effecting command, in contrast to the symbol =, which
is reserved for declarative definitions. In this context it is
worth noting that := denotes destructive update, something
which is only available for state variables introduced in an
enclosing template scope.

Types play an important role in Timber programming, still
most type information can be left out from programs due
to the automatic type inference facilities supported by the
language. A cornerstone in this process is however the def-
inition of interface signatures, which for our counter above
would look as follows:

record Counter =
incr :: Action
read :: Request Int

From this information, the inference process will be able to
deduce that counter has the type Template Counter . We
will not pursue the type system aspect any further in this
paper, though, and the coming examples can if necessary be
read as if Timber were an untyped language.

3. TIME CONSTRAINTS
Given a programming model that identifies methods with
reactions, and method calls with events, it becomes natural
to associate methods with real-time constraints. Timber
actually supports the declaration of both upper and lower
time bounds, where an upper bound is the equivalent of
a classical deadline, and a lower bound corresponds to the
generation of clock-based events typically expressed using
delays, timers, and timeouts in a traditional setting.

3.1 Deadlines

5

123

//

B D
p.x

//
q.y

q.y

T

Figure 9: Inheriting time-constraints.

The deadlines that constrain a real-time program under exe-
cution are typically derived from the desired timing behavior
of the system as a whole, by decreasing end-to-end deadlines
with any latencies and delays introduced by external compo-
nents along the signal path. This pattern could potentially
be applied for the purpose of deriving deadlines for individ-
ual software components of a reaction chain as well, but we
have chosen to adapt a different strategy with Timber. Our
arguments are threefold:

Firstly, the points in time when software components in a
reaction chain call each other are purely artificial. They will
all approach the time of the original event as CPU speed
increases.

Secondly, the time when an event first enters a Timber sys-
tem can readily be made available to subsequent reactions,
just like any ordinary parameter. This makes it unnecessary
to compensate for latencies introduced by initial segments
of a reaction chain.

Thirdly, if a Timber system is at all schedulable, it is implied
that subsequent components in a reaction chain will also
meet their deadlines. Compensating for latencies in these
components will thus not improve the schedulability of the
system.

For these reasons, the model used in Timber is that a dead-
line by default applies to all reactions that might result from
an event entering the system. Internal events are thus no
more observable than the individual statements executed by
reactions; all that matters is that every component involved
in the handling of a particular event is able to complete
before the given end-to-end deadline, measured from a com-
mon reference point in time.

We illustrate this idea with a timeline of two coupled method
executions in Figure 9. Here an event enters the system at
time B as an interrupt coupled to some method p.x. The
reaction to this event must be finished before time D, which
of course implies that p.x must complete before D. However,
p.x also makes an asynchronous call to a method q.y at some
point T during its execution. Now, instead of making this
point the start of a new timeframe with its own deadline—
which would inescapably lead to the question of what the
deadline is for reaching point T—Timber simply lets q.y in-
herit both D as well as its reference point B. Notice that if
any of p.x or q.y misses the common deadline under these
circumstances, the system must be overloaded. In partic-
ular, specifying an artificial deadline for T would not have
a chance of rectifying the problem, as the total amount of

//

B D
p.x

//
q.y

before d q.y

T

oo //d

Figure 10: Extending the deadline.

processor work required by the methods would still remain
the same.

There are however situations where only part of a reaction
is associated with a tight deadline, but other parts have
much looser constraints. This need is addressed in Timber
by a means for extending the deadline at each asynchronous
method call. An example of such a scenario is shown in
Figure 10. By prefixing the call to q.y with the construct
before d , the deadline of q.y is adjusted to d , measured rel-
ative the common reference point B (note: not the time of
the call). The new effective deadline is however dynamically
limited to values greater than or equal to the current dead-
line, in order to avoid paradoxical situations where a sec-
ondary reaction ends up more urgent than the activity that
has caused it! The ability to extend deadlines is further-
more only available for asynchronous method calls. A syn-
chronous call, which by definition occurs interjected within
activities by the caller, can neither be more urgent than the
code preceding the call, nor less urgent than the code that
follows.

The extension mechanism is also used to set the initial dead-
lines associated with external events—conceptually, the de-
fault relative deadline for such events is 0, so any positive
value constitutes a legal extension. The actual representa-
tion of relative deadlines is abstract, but a variety of con-
stant symbols is available to allow time to be expressed in
most commonly used units. A particular value sets the ef-
fective deadline to infinity, thus removing the reaction in
question from the real-time domain. It must be stressed,
though, that while the Timber scheduler bases its run-time
decisions on the deadlines attached to each reaction, no at-
tempts are made to automatically detect and handle dead-
line misses. The correct behavior in such situations is highly
application-dependent, and we will see in the following sec-
tions how detection of missed deadlines can be easily pro-
grammed. Furthermore, we believe that the greatest value
of the Timber deadline regime lies in its semantic formal-
ization of what constitutes time-correct program execution
[3]. This is a necessary starting point for any form of static
schedulability analysis, something which is of undisputed
importance to the field of hard real-time systems. We are
currently in the process of developing the basis of such an
analysis for Timber.

3.2 Baselines
As a dual to the upper, ”must-finish-before” time-bounds we
refer to as deadlines, we introduce the term baseline for the
common reference point of an event we have been introduced

6

124

//

B D
p.x

//
q.y

after b q.y

T

oo //b

Figure 11: Extending the baseline.

in the previous subsection. A baseline can be thought of as a
”must-start-after” constraint, even though it is obvious that
as long as baselines are solely identified with time-stamps of
external events, such constraints will always be met.

However, just as it is meaningful to extend the deadline of
selected method calls, so is the concept of increasing base-
lines. Analogous to the before construct, we may write
after b in front of an asynchronous call to shift its baseline
b time units into the future, again counting from the base-
line of the caller. An illustration of a baseline shift is shown
in Figure 11. Notice especially that in the absence of an ex-
plicit deadline prefix, the deadline of a call remains constant
relative its effective baseline.

By means of the after construct, the Timber programmer
is given the opportunity to schedule asynchronous method
calls at well-defined points in the future, that are insensitive
to variations in execution speed of the current statement se-
quence. Moreover, when combined with the ability to con-
trol deadlines, the window for executing these methods can
be specified with arbitrary precision. A particular advan-
tage with this mechanism is the maintained ability to react
while calls with extended baselines are in transit. In line
with the reactive object model, there is no notion of sleep-
ing or blocking involved, neither by the caller, nor by the
callee. We will see in the following section how this feature
may be put to good use.

4. USING TIME-CONSTRAINTS
In this section we will illustrate the practical side of pro-
gramming with time-constrained reactions by means of a
series of program fragments.

4.1 Periodic tasks
Our first example will be a pattern for constructing a peri-
odic task, by utilizing a recursive asynchronous method with
a shifted baseline:

let tick = action
stmts
after (50 ∗ms) tick

This method can be included in any kind of template con-
text; other methods of the same object will peacefully coex-
ist with the periodically activated code. Because the base-
line offset 50 ∗ms is measured relative the current baseline
at each invocation (and not the actual time of the call),
the implementation does not suffer from accumulating drift.
Notice that an initial call to tick is required to start the

process, so in a sense, the periodic execution that follows
can be seen as an infinitely oscillating reaction to that first
triggering event.

As an illustration to the usefulness of explicit deadlines, we
can easily define a variant of the code above where the time
slot available for stmts is much less than the period:

let tick = action
stmts
after (50 ∗ms)

before (7 ∗ms) tick

If we want to specify that all calls to tick (including the first
one) should have the same relative deadline, we might write
as follows instead:

let tick = before (7 ∗ms)
action

stmts
after (50 ∗ms) tick

Notice how the before prefix can be applied to both the
name of a method at a call site, and its actual definition.
With the referentially transparent semantics of Timber, these
alternatives both amount to the same thing!

4.2 Implementing delays
A non-repetitive call with an extended baseline is shown
in the following example, which implements a simple delay
between commands to a slow external device like a plotter.

let move pos = action
pen.ctrl Up
xy .moveto pos
after (200 ∗ms)

(action pen.ctrl Down)

As always with the after construct, the invoking object is
free continue immediately after the invocation. The exam-
ple also illustrates the use of an anonymous method; i.e., a
method not bound to a name.

The case where data must be read at the end of a specified
interval must be coded in Timber by means of a callback
method; i.e., a parameter standing for an unknown method
accepting the desired data.

let readAt pos cont = action
head .moveto pos
after (200 ∗ms)

(action
data ← head .read
cont data)

A synchronous method that simply returns the data after
200 ms cannot be written in Timber, as there exists no
means of blocking execution for that long while a method
is active. The minor awkwardness of having to supply a
callback parameter should however be contrasted with the
maintained responsivity of both the caller and the callee in
the Timber formulation. The readiness to respond to new

7

125

events during the 200 ms time-slot should have direct con-
sequences for the ease by which (say) monitoring and error
handing could be added to the template fragment above.

4.3 Timeouts
In general, a Timber object will keep track of what it has
done and what to expect by means of local state variables.
As an illustration, the following code example implements
parts of an object that issues requests over a network, after
which it expects replies within a specified interval.

template
state := Idle
let

send = action
network .sendreq reply
state := Active
after t timeout

reply d = action
if state == Active then

. . .
state := Idle

timeout = action
if state == Active then

.

In the call to network .sendreq we see a typical example of
how a callback parameter is supplied to handle a potential
reply. Notice how the two different outcomes—a real reply,
or a timeout—are given equal status in the implementation.
One may also remark that since the timeout value is mea-
sured relative to the baseline for the send call, the timeout
counter will start counting slightly before the request packet
appears on the network. If it is important that this deviation
is controlled and limited, the programmer has the option of
specifying an explicit deadline for send .

In the previous example, it is manifest that both a reply and
a timeout might occur while the sending object is in state
Idle. The fact that an external network node is fully able to
send anything it wants at any time cannot be ignored, so the
state check performed in reply must really be present in any
robust implementation. The timeout events, on the other
hand, are actually under local node control, so it might seem
reasonable to have them cancelled whenever a valid reply is
received.

Timber offers such an opportunity be means of unique mes-
sage tags that are created as the result of each asynchronous
call. Normally these tags are just ignored, but in case the
ability to cancel a specific call is needed, its tag should be
captured and stored. Cancellation amounts to calling the
special cancel method of the designated tag, as the follow-
ing fragment shows:

tag ← after t timeout
. . .
tag .cancel

The Timber library contains a useful template called singlecall ,
which takes care of managing the storage of a single tag, as
well as automatically canceling any old message whenever
a new supervised call is requested. A reformulation of the

network request example illustrates the use of singlecall to
cancel redundant timeouts.

template
state := Idle
sc ← singlecall
let

send = action
network .sendreq reply
state := Active
sc.call (after t timeout)

reply d = action
if state == Active then

. . .
sc.cancel
state := Idle

timeout = action

4.4 Missing deadlines
As deadline misses are not automatically caught by Tim-
ber, such detections must be programmed explicitly. Due
to the consistent use of baselines for timing reference, it is
easy enough to define a task that checks some application-
dependent program state when the deadline for some com-
putation is due:

before t action
after t other .checkResult
. . . do heavy computation . . .
other .deliverResult

There are however many design decisions to make before
this pattern can be turned into concrete code. Should dead-
line misses be handled exactly when they occur, or is it ok
to wait until the over-running computation is done? Should
the failing computation be aborted, or is it sufficient to sim-
ply replace or disable the deliverance of its result? What
should replace the result if the computation is aborted, and
in what state should that object be left? And how do we
deal with the fact that deadline-based systems in general are
inherently unpredictable at overload situations?

Timber does provide an experimental feature for aborting
running computations (in contrast to canceling pending mes-
sages), but we have not reached any conclusion whether this
is the right level for handling missed deadlines. While it is
clear that the need for aborting running computations is
much less pressing in Timber than in languages based on
blocking threads, we wish to point out that a thorough study
on overload handling in Timber must remain as a topic for
future work.

4.5 A time-constrained data collector
As an illustration of a reaction chain where deadlines are
gradually relaxed, consider the following sketch of the data
collecting part of a program for data acquisition and analy-
sis.

collector analyzer

8

126

= template
buf := []
let

irq = before (4 ∗microseconds)
action

data ← inport .read
buf := (baseline, data) : buf

t = 2 ∗ms
tick = before (100 ∗microseconds)

action
before t (analyzer .analyze buf)
buf := []
after t tick

return { irq = irq ; start = tick }

Here the intended scenario is that the availability of new
data is announced through an interrupt, after which a data
value must be fetched from a specified register within 4 µs.
Moreover, every 2 ms the collected data is handed over to an
analyzer for further processing. The deadline for analyzing
data is a full cycle of 2 ms; however, the jitter for these
cycles must not exceed 100 µs.

These timing requirements are expressed in Timber as a
deadline of 4 µs for the interrupt handler, and a deadline of
100 µs for the periodic tick that drives the analyzer. How-
ever, since the analyzer itself may take up to 2 ms to com-
plete its task, the hand-over call is assigned a relaxed dead-
line by means of the before construct.

In this example it is especially important to recall that ex-
plicit deadlines in Timber code denote specifications, not
statements about expected execution times. Since the con-
strained methods irq and tick are part of the same object,
they are bound to occasionally obstruct each other. That
impact is however limited to the execution times of each
method, and it is the task of a schedulability analysis to fig-
ure out if these times are short enough to allow both meth-
ods to always meet their deadlines.

4.6 A sonar driver
We will end this exposition of time-constrained program-
ming in Timber by showing a simple implementation of a
sonar driver that is coupled to an alarm. The specifications
we are assuming state that a sonar beep should be 2 ms
long, with a maximum jitter of 50 µs, and that the required
accuracy of the measurements dictate that time-stamps as-
sociated with beeps must also be accurate down to the 50 µs
range. Furthermore, the sonar is supposed to sound every 2
seconds, and the deadline for reacting to off-limit measure-
ments is 5 ms. These specifications look as follows when
translated into Timber code:

sonar port alarm =

template
t0 := genesis
let

ping = before (50 ∗microseconds)
action

port .write beepOn
t0 := baseline
after (2 ∗ms) stop
after (2 ∗ seconds) ping

stop = action
port .write beepOff

echo = before (5 ∗ms)
action

if baseline − t0 < limit then
alarm

return { irq = echo; start = ping }

5. RELATED WORK
The complexity of event-driven programming in mainstream
languages is illustrated by the existence of formalized real-
time models like ROOM and Rational Rose Real-time [13,
4]. The purpose of these models is to automatize as much
as possible of the often tedious and error-prone construc-
tion of an event-driven infrastructure, by taking abstract
system descriptions in terms of actors, messages, etc; and
generating the major part of a corresponding implementa-
tion in a language like C++ or Java, mapped onto some
specific operating system. However, despite references to
the term real-time in their names, neither of these models
support an especially well developed notion of time. This
fact is addressed by Saksena et al, who extend ROOM with
the concept of deadlines, and provide a set of guidelines for
mapping these problem domain notions onto the priority-
based thread abstractions of the presumed target system
[12]. While these guidelines undeniably identify important
areas of real-time system design, they can also be seen as
a very concrete symptom of the semantic gap that does ex-
ist between the problem and solution domains of real-time
systems.

In the realm of more domain-specific, but also more exper-
imental, real-time programming languages we find designs
that do provide general forms of timing constraints that, at
least in principle, could open up for deadline-based schedul-
ing. Examples are Real-time Euclid [9], RTC++ [16], and
CRL [14]. Hooman and van Roosmalen describe a generic
language extension in the same spirit, exemplified with an
unnamed language design that even comes with a formal
definition [6]. However, a general remark regarding these
approaches is that timing constraints apply to very fine
grain program units (statement blocks in RTC++, individ-
ual statements in CRL and the Hooman/van Roosmalen de-
sign); which, by the presence of general threads and blocking
constructs, do not correspond very well to the actual schedu-
lable units as they appear at run-time. It is also the case
that timing constraint arithmetic on this detailed level risks
being rather elaborate, something which further reduces the
value of these languages as real-time modeling tools.

Real-time Euclid is moreover an example of a language where
resource-awareness has motivated severe restrictions in ex-
pressivity in order to simplify execution time and schedula-
bility analysis [9]. This sparseness is also shared by some

9

127

real-time languages based on the functional programming
paradigm [15, 7, 11]. Here, however, the term real-time is
actually identified with bounds on resources, not with any
means for declaring constraints that specify some desired
timing behavior.

Languages for reactive programming are often associated
with the synchronous model of computation (Esterel, Signal,
Lustre) [1]. In synchronous languages, computations are as-
sumed to take place at specific instants, rather than being
spread out in time. In practice this is achieved by conduct-
ing program execution by one or more periodic clocks, where
all computations are assumed to terminate within a clock
period. The need for scheduling and schedulability analy-
sis is thus removed, at the expense of a fully synchronized
system whose responsiveness is determined by the longest
running computation. In contrast, each reaction in a Tim-
ber system can be individually constrained, and arbitrary
approximations to the idea of instantaneous computation
can be achieved by placing upper and lower time bounds
sufficiently close.

Another interesting variant of the fully time-driven approach
is the language Giotto and its underlying model in the shape
of the E-machine [5]. Here the programmer can specify that
a reaction to an event should be delivered precisely at a
certain point in time. Consequently, the output of a task
will be queued until it is time to react, and so the E machine
becomes a deterministic system. We take it as an axiom that
a fully time-driven and deterministic approach constitutes
an over-specification when used for the purpose of modeling
general time-constrained systems.

6. CONCLUSION AND FUTURE WORK
In this paper we have argued that a programming language
for real-time systems should support the declaration of time-
constraints, and that those constraints should attach to a
well-developed notion of reactions. To make our claims more
precise, we have introduced Timber, which is a concurrent
programming language based on a model of non-blocking,
reactive objects. Timber supports both upper and lower
time constraints on a reaction, where an upper constraint
corresponds to a classical deadline, and a lower constraint
constitutes a very efficient way of scheduling an event to
occur at a well-defined point in the future. A series of pro-
gramming examples has illustrated how these mechanisms
can be used to express simple solutions to common problems
in practical real-time programming.

Several directions for future work exist. One obvious path
concerns finalizing a public Timber implementation, in order
to enable gathering of experiences from a more diverse field
of programmers. We have also mentioned that the overload
behavior of Timber, not to mention deadline-based systems
in general, is an area that requires further study.

In terms of program analysis for Timber, we would like to at-
tack the general schedulability problem as well as the prob-
lem of establishing method execution times on various plat-
forms. For both problems, we expect Timber to offer some
interesting opportunities; the fact that state variables are
guaranteed to be free from concurrency interference should
for example simplify the task of establishing flow informa-

tion.

Finally, even though the deadline-based semantics of Tim-
ber lies very close to the established field of EDF scheduling
theory, there does not seem to be a straight-forward way of
determining resource requirements for the scheduled chain
reactions made possible by our after construct in any exist-
ing analysis framework. This is an interesting new research
problem that we are looking forward to study in more detail.

Acknowledgments
The work reported in this paper was sponsored in part by
DARPA, contract #F33615-00-C-3042, as part of the PCES
program (Program Composition for Embedded Systems).
This work has benefited from the comments of members of
the Project Timber team and of the PacSoft center at OGI.
Additional thanks to Jan Jonsson and Björn von Sydow for
insights and helpful discussions.

7. REFERENCES
[1] A Benveniste, P Caspi, S A Edwards, N Halbwachs,

P Le Guernic, and R de Simone. The synchronous
languages 12 years later. Proceedings of the IEEE,
91(1), January 2003.

[2] A.P. Black, M. Carlsson, M.P. Jones, R. Kieburtz, and
J. Nordlander. Timber: A programming language for
real-time embedded systems. Technical Report
CSE-02-002, Dept. of Computer Science &
Engineering, Oregon Health & Science University,
April 2002.

[3] Magnus Carlsson, Johan Nordlander, and Dick
Kieburtz. The semantic layers of Timber. In Atsushi
Ohori, editor, Programming Languages and Systems,
First Asian Symposium, APLAS 2003, Beijing, China,
volume 2895 of Lecture Notes in Computer Science.
Springer, November 2003.

[4] G. Gullekson. Designing for concurrency and
distribution with rational rose realtime. White paper,
Rational Software, 2000.

[5] Thomas A. Henzinger and Christoph M. Kirsch. The
embedded machine: Predictable, portable real-time
code. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), 2002.

[6] J. Hooman and O. van Roosmalen. An Approach to
Platform Independent Real-Time Programming.
Real-Time Systems, Journal of Time-Critical
Computing Systems, 19(1):61–112, 2000.

[7] John Hughes and Lars Pareto. Recursion and dynamic
data-structures in bounded space: Towards embedded
ML programming. In International Conference on
Functional Programming, pages 70–81, 1999.

[8] Mark Jones, Magnus Carlsson, and Johan Nordlander.
Composed, and in control: Programming the Timber
robot. http://www.cse.ogi.edu/~mpj/timbot/
ComposedAndInControl.pdf, 2002.

10

128

[9] E. Kligerman and A.D. Stoyenko. Real-Time Euclid:
A Language for Reliable Real-ime Systems. IEEE
Transactions on Software Engineering, SE-12(9), 1986.

[10] Johan Nordlander, Mark Jones, Magnus Carlsson,
Dick Kieburtz, and Andrew Black. Reactive objects.
In Proceedings of the Fifth IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2002), Arlington, VA, April 2002.

[11] Alvaro Rebon Portillo, Kevin Hammond,
Hans-Wolfgang Loidl, and Pedro Vasconcelos.
Granularity analysis using automatic size and time
cost inference. In Proceedings of IFL
’02—Implementation of Functional Languages.
Springer Verlag, September 2002.

[12] M. Saksena, P. Freedman, and P. Rodziewicz.
Guidelines for Automated Implementation of
Executable Object Oriented Models for Real-Time
Embedded Control Systems. In IEEE Real-Time
Systems Symposium, 1997.

[13] B. Selic, G. Gullekson, and P.T. Ward. Real-Time
Object-Oriented Modeling. John Wiley & Sons, 1994.

[14] A.D. Stoyenko, T.J. Marlowe, and M.F. Younis. A
Language for Complex Real-Time Systems. The
Computer Journal, 38(4), 1995.

[15] Z. Wan, W. Taha, and P. Hudak. Real-time FRP. In
International Conference on Functional Programming
(ICFP ’01), Florence, Italy, September 2001.

[16] Y. Ishikawa et al. Object-Oriented Real-Time
Language Design: Constructs for Timing Constraints.
SIGPLAN Notices, 25(10):289–298, Oct 1990.

11

129

APPENDIX F

Composed, and in Control: Programming the Timber Robot. Mark Jones, Magnus Carlsson,

and Johan Nordlander, Technical Report, August, 2002.

130

http://www.cse.ogi.edu/~mpj/timbot/ComposedAndInControl.pdf

Composed, and in Control:
Programming the Timber Robot

Mark P. Jones1, Magnus Carlsson1, and Johan Nordlander2

1 Department of Computer Science & Engineering
OGI School of Science & Engineering at OHSU, Beaverton, OR 97006, USA

2 Department of Computing Science
Chalmers University of Technology, S - 412 96, Göteborg, Sweden

http://www.cse.ogi.edu/pacsoft/projects/Timber/

Abstract. This paper describes the implementation of control algo-
rithms for a mobile robot vehicle using the programming language Tim-
ber, which offers a high-level, declarative approach to key aspects of
embedded systems development such as real-time control, event han-
dling, and concurrency. In particular, we show how Timber supports an
elegant, compositional approach to program construction and reuse—
from smaller control components to more complex, higher-level control
applications—without exposing programmers to the subtle and error-
prone world of explicit concurrency, scheduling, and synchronization.

1 Introduction

This paper describes some programs that we have written to control a small
robot vehicle called Timbot (the “Timber Robot”). The functionality provided
by these programs and the specifications of the vehicle on which they run are
not particularly unusual from the perspective of previous and current work on
autonomous control and robotics. But the novelty of our work, and the focus
of this paper, lies in our use of Timber, a new programming language that has
been designed to facilitate the construction and analysis of software for embed-
ded systems. In particular, Timber offers a high-level, declarative approach to
several of the key areas for embedded systems development—such as real-time
control, event handling, and concurrency. By comparison, the languages that
have traditionally been used in this domain typically relegate such features to
the use of primitive APIs or coding idioms, leading to programs that are harder
to analyze, and more difficult to reuse or port to new platforms.

1.1 Background: Project Timber

The work reported here has been carried out as part of a larger effort called
Project Timber (“Time as a basis for embedded real-time systems”) at the OGI
School of Science & Engineering. One of the goals of Project Timber, and of

131

particular relevance in this paper, is to investigate the role that advanced pro-
gramming languages can play in supporting the construction and analysis of
high-assurance, portable real-time systems.

Another important goal for the project is to develop techniques and mech-
anisms for building systems that adapt dynamically to changes in their envi-
ronment, in resource allocations, or computational load. By comparison, many
systems today are brittle, and become unusable, or perhaps even fail outright,
if used under conditions that their designers had not anticipated. For example,
a live MPEG video stream can quickly become unwatchable if even just a small
percentage of the underlying network packets are lost as a result of a drop in
available bandwidth. An alternative is to build more flexible systems that can
gracefully degrade the quality of the services they provide—according to user-
specified policies—and still provide useful functionality. In the case of a live video
stream, for example, we can respond to a reduction in bandwidth by reducing
the frame rate, the image size, the color depth, or some user specified combina-
tion of these, and still continue to enjoy a live, real-time video stream. In fact,
this very example was one of the motivations for including a video camera on
Timbot, and we are investigating a somewhat different application for Timber
as a tool for programming and analyzing adaptation policies. Further discussion
of these topics, however, is beyond the scope of this paper.

1.2 Outline of Paper

The rest of this paper are as follows. In Section 2, we give an overview of Tim-
bot, describing the hardware components from which it has been assembled.In
Section 3, we introduce the Timber programming language by showing how it
can be used to provide a software interface to the robot vehicle. In Section 4,
we begin to use this interface to develop a library of reusable controllers, and
then we show how these can be combined to implement more complex control
applications in Section 5. Finally, in Section 6, we conclude with a review of
future and related work.

2 Introducing Timbot

In this section, we provide an overview of Timbot, the small robot vehicle shown
in Figure 1. Built on the chassis of a radio-controlled monster truck, Timbot hosts
an on-board embedded PC (an 850MHz PIII, with 256MB ram, and a wireless
802.11b network adapter); an analog video camera on a pan-tilt mounting, which
connects to the computer via a PC/104+ frame grabber; sonar and line tracking
sensors; and a battery system that allows Timbot to be used either on the
desktop or as a standalone vehicle. Recently, we have been using Timbot with
a standard Linux distribution installed on a 1GB microdrive, which provides
enough headroom to host a fairly rich development environment. However, we
have also used Timbot in other configurations, replacing the microdrive with
smaller compact flash cards, and using custom built Linux kernels with RTAI

132

Fig. 1. Timbot, the Timber Robot

for real-time support. Timbot has more memory and more computational power
than the machines found in many industrial embedded systems; this reflects its
intended use as a platform for experimentation and demonstration. Nevertheless,
it still exhibits many of the characteristics—and raises many of the challenges—
that occur in the development of a modern, sophisticated embedded system.

The block diagram in Figure 2 shows the connections between the main
components of Timbot in more detail. At the center, the CPU is connected over

power
supply ¾ -serial

camera -
analog
video frame

grabber

CPU
(Pentium III,

850MHz,
256MB ram)

wireless
network
adapter

¾ -serial
sonar

controller - angle

?6
distance

-serial
servo

controller

?
pan

?
tilt

?
steer

- speed

Fig. 2. A Block Diagram of Timbot

standard PC buses to a network adapter and to the frame grabber/camera com-
bination in the lower left hand corner. Toward the top left, a power supply unit
generates regulated voltage supplies for each component and handles charging of
the batteries when Timbot is connected to a desktop power supply. The power
supply is also connected to the CPU by an RS232 serial line that can be used,
among other things, to query for an estimate of remaining battery power.

For this paper, however, our attention will be focused on the components
in the right hand portion of the diagram, centered around the servo and sonar
controllers. These two devices are also accessed via RS232 serial connections, and
respond to multi-byte messages from the CPU by setting the physical position
of a servo and, in the case of the sonar controller, pulsing an ultrasonic range
finder to measure the distance to an obstacle. There are four servos on Timbot,
and these can be set independently to adjust camera direction (pan), camera

133

attitude (tilt), steering direction (steer), and sonar direction (angle). In addition,
an electronic speed controller (speed), which has the same electrical interface as
a mechanical servo, is used to control the speed of Timbot’s motors, and hence
the speed at which it crosses the floor.

3 A Timber interface for Timbot

In this section, we describe the interface that Timber programs use to access
and control the robot. This interface provides a bridge from the description of
hardware in the previous section to the control programs that will come later on.
We will also use this to introduce the Timber language and the idioms of reactive
programming that it adopts. In the tradition of declarative languages, the goal
of Timber is to allow programmers to describe what they want to accomplish,
without having to worry about how it is achieved in terms of low-level concepts
such as concurrent threads, scheduling, interrupts, and synchronization.

In discussing Timber code, we will comment on important details, but we do
not attempt to provide a full tutorial or reference; further details may be found
elsewhere [1]. In fact, Timber was derived from Nordlander’s O’Haskell [3], which
was, in turn, based on the functional language Haskell [7]. Where O’Haskell mod-
ified Haskell by providing a high-level approach to concurrency and reactivity
via stateful objects, asynchronous messaging, and subtyping, the Timber lan-
guage modifies O’Haskell by adding constructs to specify timing behavior and
by adopting strict evaluation to facilitate analysis of worst-case execution times.
We hope that the key aspects of our code will be clear from the accompanying
text, but experience with Timber, O’Haskell, Haskell, or similar languages (in
decreasing order of applicability) will be needed to understand the details.

3.1 The Timbot Interface

Our first fragment of Timber code is the definition of the Timbot type, which
describes the software interface to the special hardware features of the robot:

record Timbot < Truck, CameraControl, Sonar

record Truck =

speed :: Speed -> Action

steer :: Angle -> Action

record CameraControl =

pan :: Angle -> Action

tilt :: Angle -> Action

record Sonar =

angle :: Angle -> SonarListener -> Action

The first line tells us that Timbot is a combination of three interfaces for con-
trolling vehicle movement (Truck), camera orientation (CameraControl), and

134

sonar usage (Sonar), respectively. The Truck and CameraControl interfaces are
straightforward, with methods that take either a single angle or speed parameter
and return an action that will move the corresponding servo to the specified po-
sition. More generally, actions represent “asynchronous message sends,” and are
an implicit trigger for concurrent execution, allowing new tasks to be executed
(or, at least, scheduled for later execution) without delaying further execution
of the code from which the action was invoked. (Note that there is no need to
wait for the result of an action because actions do not return values.)

The definition of the Sonar interface requires more explanation. In a tra-
ditional programming language we might expect to access the sonar by calling
a function that: sets the sensor direction; pulses the ultrasonic transducer; lis-
tens for an echo to obtain an estimate of distance; and returns the result to the
caller. It has long been recognized, however, that so-called blocking operations
like this are a significant source of complexity in the coding of concurrent and
distributed systems [4], often requiring programmers to make assumptions, or to
use encodings that can lead to deep but subtle bugs—such as deadlock—if they
are not correct or if they are not applied correctly. Timber avoids these prob-
lems by eliminating blocking computations. There are no blocking primitives in
the Timber library—no getchar, read, or delay methods, for example—nor
any means for a programmer to construct a blocking method. Instead, Timber
adopts a purely event-driven approach in which a program advertises methods
(or “callbacks”) that its environment can invoke to inform the program when
input becomes available. Of course, this event-oriented approach is widely used
in other languages, but it is weakened in many cases by the continuing presence
of blocking operations, which makes it much harder to use in a reliable fashion.

For our interface to the Timbot’s sonar, we avoid the need for blocking by
passing two parameters to the angle method. The first is the angle for the sonar,
while the second is a “listener” object that determines how the resulting distance
reading will be passed back to the program.

record SonarListener =

distance :: Maybe Distance -> Action

Notice that the distance method takes an argument of type Maybe Distance,
indicating that it will either be a value of the form Just x—when a distance x is
measured—or a value Nothing—when no measurement is obtained. This could
occur if there is no object within range (approximately 2.7m) or if the ultrasonic
signal from the sonar is absorbed instead of being reflected. By distinguishing
this case explicitly within the type system, we may incur a little extra work in
decoding and applying distance readings. Nevertheless, this is clearly preferable,
at least if one is interested in reliable control programs, to encoding an out-of-
range reading as a particular distance value, and hoping that programmers will
always remember to check for the special case.

3.2 Implementations of the Timbot Interface

Every top-level Timber program is parameterized by an env argument of type
StdEnv that allows the program to interact with the external environment in

135

which it is running. For example, the environment provides a putStrLn method
that can be used in a command of the form env.putStrLn msg to display a
message on the console. In the future, we plan to extend the environment with a
timbot method that allows the interface to Timbot’s hardware to be accessed in
a similar way as env.timbot. Our current prototype, however, uses the following
getTimbot function instead, whose implementation is discussed in Section 3.4.

getTimbot :: StdEnv -> Cmd Timbot

Of course, it is useful (and possible) to have other implementations of the Timbot
interface. For example, we use one such interface for simple development and
testing on machines other than Timbot. We are also constructing a more sophis-
ticated implementation of the interface that connects Timber control programs
to a simulator that can accurately model the motion and sensors of Timbot.

Now we can begin to write simple programs to control Timbot! The following
program, for example, uses getTimbot to obtain an interface to Timbot (binding
the variable timbot to the result), and then starts the robot moving at a constant
speed with the steering turned all the way to the left. The result, of course, is
to drive Timbot anticlockwise around the perimeter of a circle.

circle env = do timbot <- getTimbot env

timbot.steer hardLeft

timbot.speed 30

after (20*seconds) (timbot.speed 0)

The do keyword introduces a sequence of four commands. The symbolic constant
hardLeft gives the maximum angle to which the steering can be set for a left
turn. (There is, of course, a corresponding value, hardRight, for right turns.)
The speed setting of 30 corresponds to a (slow) forward speed; speed values
range between -128 (reverse, at speed!) and +127 (forward, with haste!), but we
have not yet attempted to calibrate speed in more traditional units.

Given only the first three lines, the definition of circle would, quite literally,
send Timbot into an infinite loop: once a setting is made, the servo controller
will work, even against physical pressure, to maintain it. To prevent the infinite
loop, we included the final line to specify that timbot.speed 0 should be exe-
cuted 20 seconds after the program begins. The symbolic constant seconds is a
multiplier that can be used to express time values. (There are similar multipliers
for milliseconds and microseconds.) The use of symbolic constants makes it
possible to express times in a platform independent manner, recognizing that
multiplier values are likely to vary from one machine to the next.

This is also our first example of a timing annotation. In code like this, the
after construct is intuitive and simple, but we will see that it is also powerful.
As a first hint, we note that the after construct in this example is emphatically
not the same as a 20 second (blocking) delay followed by the timbot.speed 0
command. (Remember: there are no blocking operations in Timber!) Instead, it
should be read as a high-level declaration of the time at which a specific action is
to be performed. It would make no difference if the after construct were moved
to the first line after the call to getTimbot; the semantics, and for all practical
purposes, the observational behavior of the program would not be changed.

136

3.3 Monadic Programming in Timber

While Timber adopts a strict evaluation strategy like ML [2], it also relies on
monadic programming [8] to encapsulate side-effects, and to facilitate analysis
and optimization. Many of the programs in this paper run in the Cmd monad,
meaning that they have a type of the form Cmd t, and correspond to a com-
mand that can be executed to obtain a result of type t. When no particular
return value is needed, we typically substitute the unit type, written (), for t.
For example, the circle program in the previous section is a function of type
StdEnv -> Cmd ().

In practice, most Timber programs use several different but related monads
that distinguish, for example, between methods—which have access to the local
state of an object—and commands (i.e., values with types of the form Cmd t)—
which can invoke the methods of an object, but do not themselves have any local
state. The use of different monads provides documentation and more precise in-
formation for programmers and program analysis tools alike. For example, the
type system allows us to distinguish several special types of command using sub-
types of Cmd t: commands that execute a synchronous request have a type of the
form Request t; actions—which are commands that execute an asynchronous
method call—have type Action; and commands that instantiate a template to
construct an object of type t have types of the form Template t.

Timber also provides special syntax for these different kinds of command.
Requests are written as a sequence of commands prefixed by a request key-
word instead of the do that we saw in the definition of circle. Return values
are specified by commands of the form return e. Actions are written in a sim-
ilar way, but prefixed by the action keyword. Of course, actions do not (and
cannot) specify return values. The syntax for templates uses expressions of the
form template local in e to denote a command that, when executed, will con-
struct a new object whose local state variables (if any) are initialized by the
(possibly) empty list of statements in local, and whose interface is specified by
the expression e. The interface to an object will often be a record, but this is
not required; unlike other object-oriented languages, Timber treats objects and
records as orthogonal language features.

3.4 Implementation Details

It is quite easy to implement the getTimbot function of Section 3.2 using stan-
dard Timber libraries that work with character devices. For reasons of space,
we do not include the code here, and restrict ourselves to a brief discussion of
the most important issue: synchronization. For example, from the description of
Timbot in Section 2, it is clear that truck control settings and camera control
settings must be multiplexed through the same serial link to the servo controller.
Some kind of synchronization is needed in situations like this to avoid giving con-
current tasks simultaneous access to the same device. The sonar controller might
easily become confused, for example, if the multi-byte messages for two different
control tasks were accidentally interleaved. Many languages, however, require

137

explicit coding of synchronization, which works against the goals of abstraction
because it assumes that programmers will have enough information about the
underlying implementation to understand when synchronization is required and
to know how it should be achieved. In Timber, these problems are solved at the
language level—its semantics guarantee that each object is treated as an implicit
critical section, meaning that at most one of its methods is active at a time. As
such, synchronization is implicit in Timber code, with the task of determining
where it is actually necessary being left to the underlying implementation.

4 The Controller Abstraction

While embedded systems may use sophisticated sensors and actuators to engage
in complex interactions with their environment, many present a much simpler
interface to their human users: an on/off switch! This is typical for systems that
are designed to operate autonomously, without frequent user input once they
have been turned on. We have already found several examples of this in the pro-
grams that we have been writing to control Timbot, both in small components,
and in complete programs, which we can express in timber by using the following
Controller abstraction:

record Controller =

start :: Action

stop :: Action

4.1 An Acceleration Controller: First Attempt

As an example, the following code defines a controller that will set a timbot in
motion, accelerating from rest by increasing the vehicle’s speed by incr units
after each period of time t, but never exceeding the specified maxSpeed.

accelControl :: Speed -> Speed -> TimeDiff -> Timbot -> Template Controller

accelControl maxSpeed incr t timbot

= template running := False

in let accel s = action if running then

timbot.speed s

let s’ = s + incr

if s’ <= maxSpeed then

after t (accel s’)

in record start = action if not running then

running := True

accel 0

stop = action running := False

timbot.speed 0

This controller is useful in practice because it reduces the possibility of a dam-
aging jolt that could occur if we set the speed of Timbot directly to the target
speed. The key here is the accel method that is called with a zero speed set-
ting when the controller is first started. Subsequent recursive calls increase the

138

speed in steps using after to ensure that they are distributed correctly over
time. Additional logic, using a Boolean state variable running, will terminate
the acceleration if the controller is stopped before the target speed is reached.

Unfortunately, our definition has a serious flaw: if the controller is turned off,
but then turned back on again before the next accel step is executed, then we
will continue with the sequence of accel calls initiated when the controller was
first started, while also generating a second sequence of calls for the later start.
Such behavior is unlikely to produce satisfactory results!

4.2 An Acceleration Controller: Second Attempt

Clearly, it is not enough for an acceleration controller’s stop method just to
reset the running flag and bring the vehicle to a stop with timbot.speed 0; it
must also cancel any pending calls to accel. It is easy to implement this using
standard Timber library functions. But we will go a step further and generalize
to obtain an abstraction that can be used in other contexts, while also neatly
encapsulating our solution to the bug in the original accelControl. The benefit,
of course, is that other programmers can then use this more general construct
to build new controllers more concisely, without recreating our original bug.

We start with the definition of a new subtype of Controller that adds a
method called invoke. This new method will be invoked immediately after the
controller is started. Each time it is called, however, it returns a value of type
Maybe TimeDiff, indicating when (if at all) it should next be invoked.

record RepeatController < Controller =

invoke :: Request (Maybe TimeDiff)

Now we can use an object of this type to build a controller with the correct
behavior using the following startstop function:

startstop :: RepeatController -> Template Controller

startstop rc

= template running := False

sc <- singlecall

in let tick = action mpa <- sc.invoke

case mpa of

Just t -> sc.call (after t tick)

Nothing -> done

in record start = action if not running then

running := True

rc.start

tick

stop = action if running then

running := False

sc.cancel

rc.stop

Note the use of the single call object sc, which allows our program to schedule
the execution of an action a using sc.call a, but also allows that action to

139

be canceled, if it has not already started, using sc.cancel. This provides the
missing feature that we needed to avoid the original accelControl bug, and is
included as part of the Timber libraries.

Now, for example, we can recode our accelControl controller more concisely,
and without the bug, using the following definition:

accelControl maxSpeed incr t timbot

= template s := 0

ctrl <- startstop (record

start = action s := 0

stop = action timbot.speed 0

invoke = request

timbot.speed s

s := s + incr

return (if s <= maxSpeed

then Just t else Nothing))

in ctrl

Notice that all of the logic associated with the running flag has been captured
and hidden away by the use of startstop.

4.3 Imperative versus Declarative: A Matter of Style?

Our definitions of accelControl have an imperative feel, which some readers
may feel detracts from the goals of Timber as a declarative language. This is
subjective, but we note also that it often comes down to a debate about pro-
gramming style. The following alternative definition, for example, while retaining
some imperative elements, avoids the explicit recursion in the original:

accelControl maxSpeed incr t timbot

= let profile = zip [0,t..] [0,incr..maxSpeed]

in template mc <- multicall

in record start = action

forall (ti,si) <- profile do

mc.call (after ti (timbot.speed si))

stop = action

mc.cancel

timbot.speed 0

This code defines a list of (time,speed) pairs called profile that describes the
complete acceleration process. This list is used when the controller is started
to generate a corresponding sequence of (time-delayed) actions. (The forall
construct—which might suggest a loop in an imperative language—is really just
convenient syntactic sugar for a standard operation on lists.) The only real dif-
ference here is the use of a multicall, which behaves much like a singlecall,
except that it enables us to call (and subsequently cancel) a collection of mul-
tiple pending actions. The multicall method used here is not included in the
current Timber libraries, but will perhaps be added in a future version.

140

4.4 Other Controller Components

As we write programs to control Timbot, we are collecting a library of reusable
components, like accelControl, that are useful in other applications. In this
section, we describe three representative examples from this growing collection.

Our first example is a periodicControl, which will execute a particular
command at regular intervals for as long as the controller is turned on. Its
definition is a simple application of startstop:

periodicControl :: TimeDiff -> Cmd a -> Template Controller

periodicControl t cmd = do rc <- template in

record start = action done

stop = action done

invoke = request cmd

return (Just t)

startstop rc

No special actions are needed (beyond those already handled by startstop)
when a periodicControl component is either started or stopped, so the trivial
action, done, is specified for these two methods.

Our second example is sweepControl, which can be used to sweep a device
(such as the sonar, or the camera) across a range of different angles (between
minA and maxA), changing the angle by some fixed incr after each t units of time,
and triggering an appropriate action at each point. For this example, we use an
object with a state variable angle that records the current angle, and a Boolean
state variable incr to indicate if the angle is currently increasing or not (i.e.,
moving from minA to maxA or from maxA to minA). As one might hope, the peri-
odic stepping of sweepControl is captured naturally using periodicControl.

sweepControl (minA, maxA, stepA, t) act

= template

angle := minA

incr := True

ctrl <- periodicControl t

(action act angle

if incr then angle := angle + stepA

if angle > maxA then

angle := maxA

incr := False

else angle := angle - stepA

if angle < minA then

angle := minA

incr := True)

in ctrl

Almost all of the code here deals with the specific needs of a sweepControl
component—much of which has to do with calculating how the sweep angle
should change from one step to the next. There is, by comparison, very little in
the way of boilerplate code, because that has already been packaged away for us
in abstractions like periodicControl.

141

Our third example demonstrates a different style of definition. In this case,
a multiControl controller can be used to start/stop each of the elements in a
list of controllers from a single start/stop command.

multiControl :: [Controller] -> Template Controller

multiControl cs = template in record

start = action forall c <- cs do

c.start

stop = action forall c <- cs do

c.stop

The following simple program illustrates how the components described above
can be combined to construct simple control programs for Timbot. This partic-
ular section of code, for example, constructs independent sweep controllers, each
operating at a different frequency, for the camera pan and tilt, and then uses
multiControl to package them into a single controller.

do cam <- getTimbot env

pc <- sweepControl (-60, 60, 6, 50*milliseconds) cam.pan

tc <- sweepControl (-30, 30, 2, 80*milliseconds) cam.tilt

multiControl [pc, tc]

In this example, we are simply using Timber to describe, at a high-level, the
construction and connections between a group of reusable control components.
What the language hides are the subtle and sometimes complex concurrency,
scheduling, and synchronization issues that are needed to weave the code from
each component together with the intended timing.

5 Control Applications

In this section we describe some simple control programs that can be constructed
from the components in previous sections. In particular, these programs are
designed to use information obtained from sonar. The most important details to
notice in these examples are the ease with which components can be combined,
and the clarity that results from the implicit treatment of concurrency. Note
also that each example is packaged using the same controller abstraction as the
components from which they are built. As a result, these examples could in turn
be reused as components in a larger, more complex system.

5.1 Simple Obstacle Avoidance

In this section we show the code for a simple obstacle avoidance program that
drives the robot forward while sweeping the sonar across the path in front of it
to look for obstacles. (For the purposes of this paper, an obstacle is any object
that is within 1m of the robot on its forward path. In practice, we often test
Timbot by stepping into the path of the robot and using ourselves as obstacles!)
If an obstacle is detected, then the robot will stop, but continue scanning in the

142

hope that the obstacle will move. If a full second passes with no obstacle being
detected, then the robot will once again begin accelerating forward again.

The code for simpleObstacleAvoid is straightforward, obtaining a timbot
interface; building an accelerator controller, a listener for the sonar, and a con-
troller to sweep and trigger the sonar; and gluing these pieces together.

simpleObstacleAvoid env

= do timbot <- getTimbot env

accel <- accelControl 50 10 (500*milliseconds) timbot

lstn <- obstacleLstn accel

sweep <- sweepControl (-12, 12, 2, 100*milliseconds)

(\a -> timbot.angle a lstn)

return sweep

The main control logic is provided by the listener that receives distance mea-
surements from the sonar, which we construct using the obstacleLstn function:

obstacleLstn :: Controller -> Template SonarListener

obstacleLstn ctrl

= template lastTime := 0

in record distance d

= action t <- currentBaseline

case d of

Just x | x<1.0 -> lastTime :=t

ctrl.stop

_ -> if t > lastTime+1*seconds

then ctrl.start

This listener records the time at which an obstacle was last detected in a private
state variable lastTime. Each time the sonar reports a distance, the listener
checks to see if it indicates the presence of an obstacle. Note that an out-of-
range reading is treated, perhaps rather dangerously, as an indication that no
obstacle has been seen! The careful reader might also spot that obstacleLstn
is a candidate for reuse because it can be connected to an arbitrary controller,
and not just to the accelControl that is used in simpleObstacleAvoid.

5.2 Wall Following

In this section, we show the Timber code for another well-known example of
autonomous robot control: wall-following. The goal of this application is to drive
the robot along at a fixed distance from a wall on its right hand side. If the robot
gets too close to the wall (below a distance minD), then we steer the robot to
the left, and away from the wall. On the other hand, if it gets too close (greater
than a distance maxD), then it will steer to the right, and toward the wall. (For
readers not familiar with this particular problem, we should note that this simple
strategy will only work correctly within certain parameters—we assume that the
vehicle begins parallel to the wall at a distance within minD and maxD, and that
it does not move or turn too quickly.)

143

Again, the code breaks into two pieces, the first of which constructs and
connects components, while the second encodes the main logic in a listener.

wallFollow minD maxD env

= do timbot <- getTimbot env

accel <- accelControl 40 10 (500*milliseconds) timbot

lstn <- wallLstn timbot accel minD maxD

trigger <- periodicControl (200*milliseconds)

(timbot.angle 70 lstn)

multiControl [trigger, accel]

wallLstn :: Timbot -> Controller -> Distance -> Distance

-> Template SonarListener

wallLstn timbot ctrl minD maxD

= template in record

distance d = action

case d of Just x | x < minD -> timbot.steer hardLeft

| x > maxD -> timbot.steer hardRight

| otherwise -> timbot.steer 0

Nothing -> ctrl.stop

The listener that we have used in this example responds a little differently, and
perhaps too cautiously, to an out-of-range reading from the sonar (the case for
Nothing in the definition above) by assuming that this indicates the end of the
wall, and so bringing the vehicle to rest. In fact, an out-of-range reading might
also have been the result of a transient glitch. We leave it as an exercise to the
reader to extend the definition here to delay stopping the vehicle until several
consecutive out-of-range readings have been received, and so reduce the chance
that the robot might stop prematurely,

6 Future and Related Work

The examples in this paper have demonstrated how Timber can be used to sup-
port an elegant and compositional approach to the construction of simple control
algorithms for the Timbot robot vehicle. The high-level treatment of concurrency
is particularly useful in avoiding the need for programmers to deal explicitly with
the thorny issues of synchronization, scheduling, etc. As we continue to develop
more interesting and more sophisticated control programs, we are also building
a useful library of flexible and reusable control components.

There have been several other attempts to explore the use of declarative lan-
guages in similar application domains. Rees and Donald [9], for example, showed
how the abstraction mechanisms of Scheme can be used in robot control, but
also relied on explicit concurrency and synchronization. Wallace and Runciman
[10] showed how functional languages can be used to describe an embedded con-
troller for a lift shaft, but adopted a more primitive process model that allows
processes to receive only one type of message. Most recently, Functional Reac-
tive Programming (FRP) has been used to provide declarative specifications of

144

event-based programs with continuously time-varying behavior functions. The
FRP style has been used in a number of applications including robot control
[6, 5], where a special task monad is used to sequence tasks and track the robot
state. More detailed comparison of Timber and FRP is a topic for future work.

Acknowledgments

The work reported in this paper was sponsored in part by DARPA, contract
#F33615-00-C-3042, as part of the PCES program (Program Composition for
Embedded Systems). This work has benefited from the comments of members of
the Project Timber team, and of the PacSoft and SySL centers at OGI. Partic-
ular thanks: to Perry Wagle for considerable assistance in building Timbot, and
for suggesting and prototyping interesting control applications; and to Andrew
Black, Dick Kieburtz, and James Hook for helpful insights and encouragement.

References

[1] Andrew P. Black, Magnus Carlsson, Mark P. Jones, Richard Kieburtz, and Johan
Nordlander. Timber: A programming language for real-time embedded systems.
http://www.cse.ogi.edu/PacSoft/projects/Timber/, April 2002.

[2] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML - Revised. MIT Press, 1997.

[3] Johan Nordlander. Reactive Objects and Functional Programming. PhD thesis,
Department of Computer Science, Chalmers University of Technology, Göteborg,
Sweden, May 1999.

[4] Johan Nordlander, Mark Jones, Magnus Carlsson, Dick Kieburtz, and Andrew
Black. Reactive objects. In Proceedings of the Fifth IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Computing (ISORC 2002), Ar-
lington, VA, April 2002.

[5] John Peterson, Gregory D. Hager, and Paul Hudak. A language for declarative
robotic programming. In Proceedings of the IEEE International Conference on
Robotics and Automation, Detroit, MI, May 1999.

[6] John Peterson, Paul Hudak, and Conal Elliott. Lambda in motion: Controlling
robots with Haskell. In Proceedings of Principles and Applications of Declarative
Languages (PADL ’99). Springer-Verlag, 1999.

[7] Simon Peyton Jones and John Hughes, editors. Report on the Programming Lan-
guage Haskell 98, A Non-strict Purely Functional Language, 1999. Available from
http://www.haskell.org/definition/.

[8] Simon Peyton Jones and Philip Wadler. Imperative functional programming.
In Proceedings of the 20th Symposium on Principles of Programming Languages
(POPL ’93). ACM, January 1993.

[9] Jonathan A. Rees and Bruce R. Donald. Program mobile robots in scheme. In
Proceedings of ICRA ’92, the IEEE International Conference on Robotics and
Automation, 1992.

[10] Malcolm Wallace and Colin Runciman. Lambdas in the liftshaft - functional
programming and an embedded architecture. In Proceedings of Functional Pro-
gramming and Computer Architecture, (FPCA ’95), La Jolla, California, June
1995. ACM Press.

145

APPENDIX G

Priority-Progress Streaming for Quality-Adaptive Multimedia. Buck Krasic and Jonathan

Walpole, In Proceedings of the ACM Multimedia Doctoral Symposium, Ottawa, Canada, October

2001.

146

http://www.cs.pdx.edu/~walpole/papers/acmmmds2001.pdf

Priority-Progress Streaming for
Quality-Adaptive Multimedia ∗

Charles Krasic
†

Oregon Graduate Institute
20000 NW Walker Rd.

Beaverton, Oregon 97206

krasic@cse.ogi.edu

Jonathan Walpole
‡

Oregon Graduate Institute
20000 NW Walker Rd.

Beaverton, Oregon 97206

walpole@cse.ogi.edu

ABSTRACT
The Internet’s ubiquity amply motivates us to harness it for
video distribution, however, its best-effort service model is in
direct conflict with video’s inherent timeliness requirements.
Today, the Internet is unrivaled in its rich composition, con-
sisting of an unparalleled assortment of networks and hosts.
This richness is the result of an architecture that empha-
sizes interoperability over predictable performance. From
the lowest levels, the Internet architecture prefers the best
effort service model. We feel current solutions for media-
streaming have yet to adequately address this conflict be-
tween timeliness and best-effort service.

We propose that streaming-media solutions targetted at
the Internet must fully embrace the notion of graceful degra-
dation, they must be architected with the expectation that
they operate within a continuum of service levels, adjusting
quality-resource trade-offs as necessary to achieve timeliness
requirements. In the context of the Internet, the continuum
of service levels spans across a number of time scales, ranging
from sub-second timescales to timescales as long as months
and years. We say sub-second timescales in relation to short-
term dynamics such as network traffic and host workloads,
while timescales of months and years relate to the continu-
ous deployment of improving network, compute and storage
infrastructure.

We support our thesis with a proposal for a streaming
model which we claim is simple enough to use end-to-end,
yet expressive enough to tame the conflict between real-
time and best-effort personalities of Internet streaming. The
model is called Priority-Progress streaming. In this pro-

∗This work was partially supported by DARPA/ITO under
the Information Technology Expeditions, Ubiquitous Com-
puting, Quorum, and PCES programs and by Intel.
†Phd student
‡Phd advisor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

posal, we will describe the main features of Priority-Progress
streaming, which we have been implemented in a software-
based streaming video system, called the Quasar pipeline.

Our work is primarily concerned with the class of stream-
ing applications. To prevent confusion, we now clarify the
important distinction between streaming and other forms
of distribution, namely download. For a video, we assume
download is defined so that the transfer of the video must
complete before the video is viewed. Transfer and view-
ing are temporally sequential. With this definition, it is a
simple matter to employ Quality-adaptive video. One algo-
rithm would be to deliver the entire video in the order from
low to high quality components. The user may terminate
the download early, and the incomplete video will automat-
ically have as high quality as was possible. Thus, Quality-
adaptive download can be implemented in an entirely best-
effort, time-insensitive, fashion. On the other hand, we as-
sume streaming means that the user views the video at the
same time that the transfer occurs. Transfer and viewing
are concurrent. There are timeliness requirements inherent
in this definition, which can only be reconciled with best-
effort delivery through a time-sensitive adaptive approach.

1. PRIORITY-PROGRESS STREAMING
The central notion of Priority-Progress streaming is to

decompose application data into units of work, application
data units (ADUs), each labeled with timestamp and pri-
ority. The timestamp is meant to capture the timeliness
requirements of each ADU, and is expressed in units of the
normal play time of the media stream. As ADUs are pro-
cessed end-to-end, the timestamps and priorities provide vi-
tal information necessary to regulate work so as to ensure
proper real-time progress. The priority exposes the layered
nature of the media, where quality can be progressively im-
proved given more of the limiting resource: network, pro-
cessing, or storage.

We use the priorities to achieve graceful degradation. Al-
though a threshold priority-drop approach could be applied
rather directly to match quality to available resources, there
remains an issue that the resource-quality relationship may
vary rapidly, and a user will likely be annoyed by the un-
stable quality. Our own experience implementing a Quality-
Adaptive video system has shown us that streams can have
non-smooth and highly dynamic quality-rate relationships,
which are inconsistent across resource types[3]. Further-
more, the experience of others indicates to us that predict-

147

ing available network bandwidth is equally problematic[4].
We are thus motivated to reformulate the problem to avoid
explicitly predicting either priority-rate relationship or re-
source availability. The unique aspect of Priority-Progress
streaming presented here is that it uses ADU-reordering in
its buffers to do just that.

Downstream
Adaptation

Buffer

BottleneckUpstream
Adaptation

Buffer

Progress
Regulator

ADUs
(timestamp

 order)

 ADUs and NACKS
(priority

 order)

Requests
(window start, end)

Status
(sent downstream)

current play position

Figure 1: Priority-Progress Control

Figure 1 depicts the structure of Priority-Progress con-
trol within a media pipeline. A pair of re-ordering buffers is
employed around each bottleneck pipeline component. For
example, in the Quasar pipeline we have one such element
responsible for streaming across a network transport. Sim-
ilarly, the software-decompression element is considered a
bottleneck, as it has unpredictable progress rates due both
to data dependencies in MPEG and to external influences
from competing tasks in a multi-tasking environment. The
capacities of the re-ordering buffers are managed in terms of
time, making use of the timestamp labels on ADUs1. The al-
gorithm for Priority-Progress Streaming contains three sub-
components, for the upstream buffer, downstream buffer,
and progress regulator respectively.

The upstream and downstream buffer algorithms operate
as follows. The upstream buffer admits all ADUs within the
time boundaries provided by the progress regulator, these
boundaries delimit the adaptation window. Each time the
regulator advances the window forward, the unsent ADUs
from the old window position are expired and the window
is populated with ADUs of the new position. ADUs flow
from the buffer in priority-order through the bottleneck to
the downstream adaptation buffer, as fast as the bottleneck
will allow. The downstream adaptation buffer collects ADUs
and re-orders them to timestamp order. ADUs are allowed
to flow out from the downstream buffer when it is known
that no more ADUs for a timestamp are coming.

To explain how the progress regulator works, it is impor-
tant to understand how the flow of ADUS relates to the
presentation timeline, as shown in Figure 2. The timeline
is based on the usual notion of normal play time, where a
presentation is thought to start at time zero (epoch a) and
run to its duration (epoch e). Once started, the presentation

1For simplicity, we consider the buffers unbounded in terms
of space, although space constraints can be enforced without
difficulty.

Beyond Prefetch Horizon

Dropped

Eligible

Sent

ADU Status:

Timestamp

Priority

Adaptation
Window

Downstream Done

Time Epochs:
a - presentation start
b - current play position
c - adaptation-window end
d - adaptation-window start
e - presentation end

Presentation
Quality

abce d

Figure 2: Priority-Progress Timeline

time (epoch b) advances at some rate synchronous with real-
time. The ADUs within the adaptation window in the time-
line correspond to the contents of the upstream and down-
stream re-order buffers; ADUs within the adaptation win-
dow that are sent are either in the bottleneck or the down-
stream buffer, while ADUs still eligible are in the upstream
buffer. The interval spanned by the adaptation window is
the key to our ability to control the responsiveness-stability
trade-off of quality adaptation. The larger the interval, the
less responsive and the more stable quality adaptation will
be. A highly responsive system is generally required at times
of interactive events (start, fast-forward, etc.), while stable
quality is generally preferable. We transition from respon-
siveness to stability by progressively expanding the adapta-
tion window. The regulator can manipulate the size of the
window through actuation of the ratio between the rate at
which the adaptation window is advanced and the rate at
which the presentation clock advances. By advancing the
timeline faster than the presentation clock (ratio > 1), the
regulator can expand the window with each advancement,
skimming some current quailty in exchange for more stable
quality later.

2. REFERENCES
[1] W. chi Feng, M. Liu, B. Krishnaswami, and

A. Prabhudev. A priority-based technique for the
best-effort delivery of stored video. In SPIE/IS&T
Multimedia Computing and Networking 1999, San Jose,
California, January 1999.

[2] N. Feamster, D. Bansal, and H. Balakrishnan. On the
interactions between layered quality adaptation and
congestion control for streaming video. In 11th
International Packet Video Workshop (PV2001),
Kyongiu, Korea, April 2001.

[3] C. Krasic and J. Walpole. QoS scalability for streamed
media delivery. CSE Technical Report CSE-99-011,
Oregon Graduate Institute, September 1999.

[4] R. Rejaie, M. Handley, and D. Estrin. Quality
adaptation for congestion controlled video playback
over the internet. In Proceedings of ACM SIGCOMM
’99 Conference, Cambridge, MA, October 1999.

148

APPENDIX H

Supporting Low-Latency TCP-Based Media Streams. Ashvin Goel, Buck Krasic, Kang Li,

Jonathan Walpole, In Proceedings of the Tenth International Workshop on Quality of Service

(IWQoS 2002), Miami Beach, Florida, May 2002.

149

http://www.cs.pdx.edu/~walpole/papers/iwqos2002.pdf

Supporting Low Latency TCP-Based Media Streams

Ashvin Goel Charles Krasic Kang Li Jonathan Walpole
Oregon Graduate Institute, Portland

{ashvin,krasic,kangli,walpole }@cse.ogi.edu

Abstract—The dominance of the TCP protocol on the Internet
and its success in maintaining Internet stability has led to several
TCP-based stored media-streaming approaches. The success of
these approaches raises the question whether TCP can be used for
low-latency streaming. Low latency streaming allows responsive
control operations for media streaming and can make interactive
applications feasible. We examined adapting the TCP send buffer
size based on TCP’s congestion window to reduce application per-
ceived network latency. Our results show that this simple idea sig-
nificantly improves the number of packets that can be delivered
within 200 ms and 500 ms thresholds.

I. I NTRODUCTION

Traditionally, the multimedia community has considered
TCP unsuitable for streaming audio and video data. The main
issues raised against TCP-based streaming have been related to
congestion controlandpacket retransmissions. TCP congestion
control is designed to probe available bandwidth through delib-
erate manipulation of the transmission rate. This rate variation
can impede effective streaming because the streaming require-
ments are not necessarily matched with the transmission rate,
causing either data dropping or accumulation of buffered data
and thus delay. In addition, congestion control can lead to sus-
tained or long-term reduction in rate.

TCP uses packet retransmissions to provide in-order, lossless
packet delivery. Packet retransmissions can potentially intro-
duce unacceptable end-to-end latency and thus re-sending me-
dia data may not be appropriate because it would arrive too late
for display at the receiver.

Recently, several approaches have been proposed to over-
come these problems [4], [26], [14], [25], [18]. These TCP-
based stored media streaming approaches use a combination
of client-side bufferingand efficientQoS adaptationof the
streamed data. Client-side buffering essentially borrows some
current bandwidth to prefetch data to protect against future rate
reduction. Thus, with sufficient client-side buffering, short-
term rate variations introduced by TCP as well as the de-
lay introduced by packet retransmissions can both be handled.
QoS adaptation allows fine-grained adjustment of the rate-
distortion tradeoff, i.e., rate versus quality adjustment, during
the transmission process and thus allows handling long-term
rate changes by adjusting quality dynamically.

TCP-based streaming is desirable because TCP offers several
well known advantages. TCP provides congestion controlled
delivery which is largely responsible for the remarkable stabil-
ity of the Internet despite an explosive growth in traffic, topol-
ogy and applications [13]. TCP handles flow control and packet

This work was partially supported by DARPA/ITO under the Information
Technology Expeditions, Ubiquitous Computing, Quorum, and PCES programs
and by Intel.

losses, so applications do not have to worry about recovery from
packet losses. This issue is especially important because the ef-
fects of packet loss are non-uniform and can quickly become
severe. For instance, loss of the header bits of a picture typi-
cally renders the whole picture and possibly a large segment of
surrounding video data unviewable while loss of certain pixel
blocks may be virtually imperceptible. Thus media applications
over a lossy transport protocol have to implement complex re-
covery strategies such as FEC [27] that potentially have high
bandwidth and processing overhead. Finally, given the large
TCP user base, there is great interest in improving its perfor-
mance. Such improvements can also help media streaming.

In this paper, we study the feasibility of using TCP for low-
latency media streaming. We are concerned withprotocol la-
tency,which we define as the time difference from a write on the
sender side to a read on the receiver side, i.e., socket to socket
latency. Low latency streaming is desirable for several applica-
tions. For streaming media, control operations such as the se-
quence of start play, fast forward and restart play become more
responsive because the network and the end-points have low de-
lay in the data path. For video on demand servers, low latency
streaming offers faster channel surfing (starting and stopping of
different channels). Similarly, multimedia document browsing
becomes more responsive. Finally, with sufficiently low latency
streaming, interactive streaming applications become feasible.

Although there have been several studies that describe the
packet delays experienced by TCP flows [1], [23], [9] there has
been much less work describing the protocol latency observed
by applications streaming over TCP. This lack of study of pro-
tocol latency is partly because TCP has often been considered
impractical for streaming applications and thus few TCP-based
streaming applications have been developed. In addition, non-
QoS adaptive streaming applications require large buffering at
the ends to handle bandwidth variations, so protocol latency
can be a second order effect. Fortunately, with quality adaptive
streaming applications, the buffering needed at the end-points
can be tuned and made small and thus protocol latency becomes
more significant.

This paper examines TCP protocol latency by showing the
latency observed at the sender side, receiver side and the net-
work under various network conditions. Our results show that,
surprisingly, a significant portion of the protocol latency oc-
curs due to TCP’ssend bufferand this latency can be elimi-
nated by making some simple send-buffer modifications to the
sender side TCP stack without changing the TCP protocol in
any way. These modifications dynamically adapt (reduce) the
send buffer size and have similarity to the send-buffer tuning
work by Semke [29]. However, unlike their work which focuses
on improving TCP throughput, this work focuses on reducing

150

socket to socket latency.
Our experiments show that these modifications reduce the

average protocol latency to well within the interactive latency
limits of approximately 200 ms [12] when the underlying net-
work round-trip time is less than 100 ms (coast-to-coast round-
trip time in the US [9]).1 This reduction in latency comes at a
small expense in throughput.

At this point, it may seem that our send-buffer reduction ap-
proach would reduce latency from the TCP layer but would
re-introduce it at the application layer, and thus the net effect
on application-level end-to-end latency is unclear. Fortunately,
this issue is not a real problem because we assume that latency-
sensitive applications are 1) quality-adaptive and 2) they use
poll and non-blockingwrite calls on the sending side. The
benefit of low latency streaming is that the sending side can
wait longer before making its quality adaptation decisions, i.e.,
it has more control and flexibility over what data should be sent
and when it should be sent. For instance, if the low protocol-
latency network doesn’t allow the application to send data for
a long time, the sending side can drop low-priority data and
then send data, which will arrive at the receiver with low de-
lay (instead of committing the low-priority data to a large TCP
send-buffer early and then lose control over quality adaptation
when that data is delayed in the send buffer). The non-blocking
write calls ensure that the sending side is not blocked from do-
ing other work (such as media encoding) while the network is
busy. In addition, the application does not spend CPU cycles
polling for the socket-write ready condition since the kernel in-
forms the application when the socket is ready for writing.

The sender-side modifications reduce average protocol la-
tency significantly but are not sufficient for interactive stream-
ing applications since many packets can still observe latencies
much higher than 200 ms. These latency spikes occur due
to packet dropping and retransmissions and thus motivate the
need for mechanisms that reduce packet dropping in the net-
work. One such mechanism is explicit congestion notifica-
tion (ECN) [24]. With ECN, routers use active queue manage-
ment [5] and indirectly inform TCP of impending congestion
by setting an ECN bit on packets that would otherwise have
been dropped. TCP uses the ECN bit to pro-actively reduce its
sending rate, thus reducing network load and packet dropping in
the network. This paper explores how TCP enabled with ECN
effects protocol latency.

The next section presents our modifications to the TCP send-
ing side to reduce protocol latency. Section III describes our
experimental methodology for evaluating the latency behavior
of TCP. Section IV presents our results. Section V summarizes
related work in multimedia and low latency streaming, and TCP
congestion control. Section VI discusses future work in low-
latency TCP streaming, and finally, Section VII presents our
conclusions.

II. TCP SEND BUFFER

This section discusses our approach to reducing protocol la-
tency by dynamically adjusting the TCPsend buffersize. TCP

1We are focusing on protocol latency (or socket to socket latency) and ignore
the processing times at the application end points in this paper.

is a window-based protocol, where its window size is the maxi-
mum number of distinct (and unacknowledged) packets in flight
in the network at any time. TCP adapts the size of its window
based on congestion feedback and stores this size value in the
TCP variable CWND. TCP uses afixed sizesend buffer to store
application data before the data is transmitted. This buffer has
two functions. First, it handles rate mismatches between the ap-
plication sending rate and TCP’s transmission rate. Second, it is
used to keep copies of the packets in flight (its current window)
so they can be retransmitted when needed. Since CWND stores
the number of packets in flight, its value can never exceed the
send buffer size.

From a latency perspective, the fixed size send buffer can
introduce significant latency into the TCP stream. As a con-
crete example, the send buffer in most current Unix kernels is
at least 64KB. For a 300 Kbs video stream, a full send buffer
contributes 1700 ms of delay. By comparison, the round trip
delay may lie between 50-100 ms for coast-to-coast transmis-
sion within the United States. In addition, the buffering de-
lay increases for smaller bandwidth streams or with increasing
competition since the stream bandwidth goes down.

We believe that for latency sensitive streams, sender-side
buffering should be moved out of the TCP stack and applica-
tions should be allowed to handle buffering as much as possi-
ble. This approach is in keeping with the end-to-end principle
followed by TCP where the protocol processing complexity is
moved out of the network as much as possible to the stream end
points. We do not modify TCP receive-side buffering because
our applications aggressively remove data from the receive-side
buffer. Thus, receive-side delay is only as issue when packets
are retransmitted by TCP. This issue is discussed further in Sec-
tion IV-C.

A. Adapting Send Buffer Size

One method for reducing the latency caused by the send
buffer is to statically reduce the size of the send buffer. This
approach has a negative effect on the throughput of the flow if
the number of packets in flight (CWND) is limited by the send
buffer (and not by the network congestion signal). In this case,
the flow throughput is directly proportional to the send buffer
size and decreases with a smaller send buffer. We reject this
approach because although our main goal is to reduce proto-
col latency, we also aim to achieve throughput comparable to
standard TCP.

Now suppose that the send buffer was sufficiently large that
TCP could adjust the value of CWND based only on conges-
tion (and receiver buffer) feedback. It should be clear that for
this condition to hold, the size of the send buffer should be
at least CWND packets. A smaller value would limit CWND
to the send buffer size and reduce the throughput of the flow.
A larger value should not affect throughput significantly since
TCP would not send more than CWND packets anyway. How-
ever, a larger value increases protocol latency because only
CWND packets can be in flight at any time, and thus the rest
of the packets have to sit in the send buffer until acknowledg-
ments have been received for the previous packets.

This discussion shows that adjusting the send buffer size
to follow CWND can reduce protocol latency without signif-

151

icantly affecting flow throughput. We have implemented this
approach, as described in Section II-B. This approach impacts
throughput when TCP could have sent a packet but there are no
new packets in the send buffer. This condition can occur for
several reasons. First, with each acknowledgment arrival, stan-
dard TCP has a packet in the send buffer that it can send imme-
diately. If the send buffer size is limited to CWND, then TCP
must inform the application and the application must write the
next packet before TCP can send it. Thus, system timing and
scheduling behavior can affect TCP throughput. Second, back-
to-back acknowledgment arrivals exacerbate this problem. Fi-
nally, the same problem occurs when TCP increases CWND.
These adverse affects on throughput can be reduced by adjust-
ing the buffer size so that it is larger than CWND. To study
the impact on throughput, we experimented with three different
send buffer configurations as described in the next section.

B. Send Buffer Modifications

To reduce sender-side buffering, we have made a small send-
buffer modification to the TCP stack on the sender side in the
Linux 2.4 kernel. This modification can be enabled per socket
by using a new SOTCP MIN BUF option, which limits the
send buffer size toA∗CWND+MIN(B,CWND) packets at any
given time. The send buffer size is at least CWND becauseA
must be an integer greater than zero andB is zero or larger. We
assume, as explained in more detail later, that the size of each
application packet is MSS (maximum segment size). With the
send-buffer modification, an application is blocked from send-
ing when there areA ∗ CWND + MIN(B,CWND) packets in
the send buffer. In addition, the application is woken up when
at least one packet can be admitted in the send buffer. By de-
faultA is one andB is zero, but these values can be made larger
with the SOTCP MIN BUF option. From now on, we call a
TCP stream that has the SOTCP MIN BUF option turned on
with parametersA andB, a MIN BUF(A, B) stream.

With these modifications to TCP and assuming a
MIN BUF(1, 0) stream, the send buffer will have at most
CWND packets after an application writes a packet to the
socket. TCP can immediately transmit this packet since this
packet lies within TCP’s window. After this transmission, TCP
will again allow the application to write data. Thus as long
as CWND is non-decreasing, TCP will not add any buffering
delay to a stream. Delay is added only during congestion
when TCP decreases the value of CWND. Our experiments in
Section IV show that this delay is generally much smaller than
the standard TCP send-buffer delay.

The SOTCP MIN BUF option exposes the parameterA
andB, because they represents a tradeoff between latency and
throughput. Larger values ofA or B add latency but can im-
prove throughput as explained in the previous section. We
experimented with three MINBUF streams: MINBUF(1, 0),
MIN BUF(1, 3) and MIN BUF(2, 0). These streams should
have increasing latency and throughput. A MINBUF(1, 0)
stream is the default stream with the least protocol latency. We
expect a MINBUF(2, 0) stream to have the same throughput
as TCP because there are CWND extra packets in the send
buffer and even if acknowledgments for all packets in the pre-
vious window come simultaneously, the next window of pack-

ets can be sent without first getting packets from the appli-
cation. Thus a MINBUF(2, 0) stream should behave sim-
ilarly (in terms of throughput) to a TCP stream [16]. Fi-
nally, we chose a MINBUF(1, 3) stream to see how three ex-
tra packets affect latency and throughput. If no more than
three acknowledgments arrive back to back, then this stream
should behave similar to TCP in terms of bandwidth. Sec-
tion IV presents latency and throughput results for the three
streams. Briefly, our results show that 1) MINBUF(1, 0) and
MIN BUF(1, 3) flows has similar latencies and these latencies
are much smaller than MINBUF(2, 0) or TCP flows, and 2)
while a MIN BUF(1, 0) flow suffers 30 percent bandwidth loss,
the MIN BUF(1, 3) flow suffers less than 10 percent bandwidth
loss. Thus, the MINBUF(1, 3) flow represents a good latency-
bandwidth compromise.

1) Sack Correction:The previous discussion about the send
buffer limit applies for a non-SACK TCP implementation. For
TCP SACK [15], we make asack correctionby adding an ad-
ditional termsackedout to A ∗ CWND + MIN(B,CWND).
The sackedout term (or an equivalent term) is maintained by
a TCP SACK sender and is the number of selectively acknowl-
edged packets. With TCP SACK, when selective acknowledg-
ments arrive, the packets in flight are no longer contiguous but
lie within a CWND+sackedout packet window. We make the
sack correction to ensure that the send buffer limit includes this
window and is thus at least CWND+sackedout. Without this
correction, TCP SACK is unable to send new packets for a
MIN BUF flow and assumes that the flow is application lim-
ited. It can thus reduce the congestion window multiple times
after the arrival of selective acknowledgments.

2) Alternate Application-Level Implementation:It is con-
ceivable that the objectives of the send-buffer modifications can
be achieved at the application level. Essentially the application
would stop writing data when the socket buffer has a fill level
of A ∗CWND + MIN(B,CWND) packets or more. The prob-
lem with this approach is that the application has to poll the
socket fill level. Polling is potentially both expensive in terms
of CPU consumption and inaccurate since the application is not
informed immediately when the socket-fill level goes below the
threshold.

C. Application Model

In this paper, we are concerned with protocol latency. We
ignore the processing time at the application end points since
these times are application dependent. However, these times
must also be included when studying the feasibility of a low
latency application such as an interactive media streaming ap-
plication.

We assume that latency-sensitive applications use non-
blocking read and write socket calls. The protocol latency is
measured from when the packet write is initiated on the sender
side to when the same packet is completely read on the receiver
side. The use of non-blocking calls generally means that the
application is written using an event-driven architecture [22].

We also assume that applications explicitly align their data
with packets transmitted on the wire (application level fram-
ing) [2]. This alignment has two benefits: 1) it minimizes
any latency due to coalescing or fragmenting of packets below

152

the application layer, 2) it ensures that low-latency applications
are aware of the latency cost and throughput overhead of co-
alescing or fragmenting application data into network packets.
For alignment, an application writes MSS (maximum segment
size) sized packets on each write. TCP determines MSS dur-
ing stream startup but the MSS value can change due to various
network conditions such as routing changes [17]. A latency-
sensitive application should be informed when TCP determines
that the MSS has changed. Currently, we detect MSS changes
at the application level by querying TCP for the MSS before
each write. Another more efficient option would be to return a
write error on an MSS change for a MINBUF socket.

III. E XPERIMENTS

In this section, we describe the tests we performed to eval-
uate the latency and throughput behavior of standard TCP
and MIN BUF streams under various network conditions. All
streams use TCP SACK and MINBUF streams use the sack
correction described in Section II-B. We performed our exper-
iments on a Linux 2.4 test-bed that simulates WAN conditions
by introducing delay at an intermediate Linux router in the test-
bed.

A. Experimental Scenarios

The first set of tests considers the latency response of TCP
streams to a sudden increase in congestion. Increase in conges-
tion is triggered with three types of flows: 1) competing long-
lived TCP flows, 2) a flash crowd of many small TCP flows,
and 3) a competing constant bit rate (CBR) flow, such as a UDP
flow. The long-lived competing flows are designed to simulate
other streaming traffic. The flash crowd of short TCP flows
simulates web transfers. In our experiments, the small flows
have fixed packet sizes and they are run back to back so that
the number of active TCP connections is roughly constant [11].
The CBR flow simulates non-responsive UDP flows.

While these traffic scenarios do not necessarily accurately
model reality, they are intended to explore and benchmark the
latency behavior of TCP and MINBUF streams in a well char-
acterized environment. These tests are designed to emulate a
heavily loaded network environment.

The second set of tests measures the relative throughput share
of TCP and MINBUF streams. Here we are mainly concerned
with the bandwidth lost by MINBUF traffic. These experi-
ments are performed with the same types of competing flows
described above.

We are interested in several metrics of a latency-sensitive
TCP flow. We explore three metrics in this paper: 1) protocol
latency distribution, and specifically, the percentage of packets
that arrive at the receiver within adelay threshold, 2) average
packet latency, and 3) normalized throughput, the ratio of the
throughput of a MINBUF flow to a TCP flow. We choose
two delay thresholds, 200 ms, which is related to interactive
streaming performance, and 500 ms, which is somewhat arbi-
trary, but chosen to represent the requirements of responsive
media streaming control operations.

In addition to comparing the latency behavior of standard
TCP and MINBUF streams, we are also interested in under-
standing the effects on protocol latency of ECN enabled TCP.

Sender (S)

Dump (DU)

Receiver (R2)

Receiver (R1)

Router

Fig. 1. Network Topology

Our results describe how this “streaming friendly” mechanism
affects protocol latency.

B. Network Setup

All our experiments use a single-bottleneck “dumbbell”
topology and FIFO scheduling at the bottleneck. The network
topology is shown in Figure 1. Each box is a separate Linux
machine. The latency and throughput measurements are per-
formed for a single stream originating at the senderS and ter-
minating at receiverR1. This stream is generated by an applica-
tion that follows the application model described in Section II-
C. The sender generates cross traffic for both receiversR1and
R2. The router runsnistnet [20], a network emulation pro-
gram that allows the introduction of additional delay and band-
width constraints in the network path. The machine DU is used
to dump TCP traffic for further analysis. The protocol latency
is measured by recording the application write time for each
packet on the senderS and the application read time for each
packet on the receiverR1. All the machines are synchronized
to within one ms of each other using NTP.

We chose three round-trip times (RTT) for the experiments
and conducted separate experiments for each RTT. The RTTs
were 25 ms, 50 ms and 100 ms. These RTTs approximate some
commonly observed RTTs on the Internet. The cable modem
from our home to work has 25 ms delay. West-coast to west-
coast sites or East-coast to East-coast sites in the US observe
50 ms median delay and west-coast to east-coast sites in the US
observe 100 ms median delay [9].

We run our experiments over standard TCP and ECN enabled
TCP. For each RTT, two router queue lengths are chosen so that
bandwidth is limited to 12 Mbs and 30 Mbs. The TCP experi-
ments use tail dropping. For ECN, we use DRED active queue
management [7], which is supported inNistnet . DRED is
a RED variant that is implemented efficiently in software. The
drdmin, drdmaxanddrdcongestparameters of DRED were cho-
sen to be 1.0, 2.0 and 2.0 times the bandwidth-delay product,
respectively. DRED sends ECN messages for 10 percent of
packets when the queue length exceedsdrdmin, progressively
increasing the percentage until packets are dropped when the
queue length exceedsdrdcongest. Unlike RED, DRED does
not average queue lengths.

IV. RESULTS

In this section, we discuss the results of our experiments.
We start by showing the effects of using TCP and MINBUF
streams on protocol latency. Then we quantify the throughput
loss of these streams. We investigate the latencies observed at

153

0

10000

20000

30000

0 10 20 30 40 50 60 70 80

B
an

dw
id

th
 (

K
b/

s)

Time (seconds)

Elephants
Mice
CBR

Fig. 2. The bandwidth profile of the cross traffic (15 elephants, 80 mice
consuming about 30% bandwidth and 10% CBR traffic)

the sender, network and the receiver of TCP streams and the
causes of each latency. Finally, we explore using ECN enabled
TCP to improve protocol latencies.

A. Protocol Latency

Our first experiment shows the protocol latency of TCP and
MIN BUF streams in response to dynamically changing net-
work load. The experiment is run for about 80 seconds with
load being introduced at various different time points in the
experiment. The TCP or MINBUF long-lived stream being
measured is started at t = 0s. We refer to this flow as thela-
tencyflow. Then at t = 5s, 15 other long-lived (elephant) flows
are started, 7 going to receiver R1 and 8 going to receiver R2.
At t = 20s, each receiver initiates 40 simultaneous short-lived
(mouse) TCP flows. A mouse flow is a repeating short-lived
flow that starts the connection, transfers 20KB of data, ends
the connection and then repeats this process continuously [11].
The number of mouse flows was chosen so that the mouse flows
would get approximately 30 percent of the total bandwidth. At
t = 40s, CBR traffic that consumes 10 percent of the bandwidth
is started. At t = 60s, the elephants are stopped and then the
mice and the CBR traffic are stopped at t = 75s. Figure 2 shows
the cross traffic (elephants, mice and CBR traffic) for a 30 Mbs
bandwidth, 100 ms RTT experiment. Other experiments have a
similar bandwidth profile.

Figure 3 shows the results of a run with standard TCP and
MIN BUF(1, 0) streams when the bandwidth limit is 30Mbs
and the round trip time is 100 ms. Both these streams originate
at sender S and terminate at receiver R1. The figures shows the
protocol latency of the latency flow as a function of packet re-
ceive time. The two horizontal lines on they axis show the 200
ms and the 500 ms latency threshold.

Figure 4 shows the protocol latency of the three MINBUF
configurations. Note that in this figure, the maximum value
of the y axis is 500 ms. These figures show that the
MIN BUF streams have significantly lower protocol latency
than a standard TCP stream. They show that, as expected,
the MIN BUF(1, 0) flow has the lowest protocol latency while
the MIN BUF(2, 0) has the highest protocol latency among the
MIN BUF flows. Looking at the throughput profile of the laten-
cies flows (now shown here), we found that the protocol latency
of TCP and MINBUF(2, 0) is highest when the flow through-
put is lowest. However, the protocol latency of MINBUF(1, 0)
and MIN BUF(1, 3) flows is not affected as much by their
changing throughput. The reason is that the TCP send buffer
drains slowly when the bandwidth available to the latency
stream goes down. Since TCP and MINBUF(2, 0) flows allow

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80

La
te

nc
y

(m
s)

Time (seconds)

TCP

(a) TCP

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80

La
te

nc
y

(m
s)

Time (seconds)

TCP MIN_BUF (1,0)

(b) MIN BUF(1,0)

These figures show the protocol latency of packets plotted as a function
of packet receive time. The bandwidth limit for this experiment is 30
Mbs and the round trip time is 100 ms. The horizontal lines on the
figures show the 200 ms and 500 ms latency threshold.

Fig. 3. A comparison of the protocol latencies of TCP and MINBUF(1,0)
streams

the send buffer to fill up more than the other two flows, these
flows observe higher protocol latencies. The send buffer does
not significantly affect the protocol latency in MINBUF(1, 0)
and MIN BUF(1, 3) flows. The latency spikes seen in these
flows are chiefly a result of TCP congestion control and retrans-
mission as discussed in Section IV-C.

The protocol latency distribution for this experiment is
shown in Figure 5. The experiment was performed with 30Mbs
and 12Mbs bandwidth limit and with 100 ms, 50ms and 25
ms RTT. Each experiment was performed 8 times and the re-
sults presented show the numbers accumulated over all the runs.
The vertical lines show the 200 and 500 ms delay thresholds.
The figures show that in all cases a much larger percent of
TCP packets lie outside the delay thresholds as compared to
MIN BUF flows. Note that the x axis, which shows the proto-
col latency in milliseconds, is on a log scale. The figures show
that, as expected, the percent of packets with large delays in-
creases with increasing RTT and decreasing bandwidth. The
percent of packets delivered within the 200 and 500 ms delay
thresholds is summarized in Table I. This table also shows that
the packets delivered within the delay thresholds is very similar
for MIN BUF(1, 0) and MIN BUF(1, 3) flows.

The average (one way) protocol latency for each configura-
tion is shown in Table II. Each experiment was performed 8
times and these numbers are the mean of the 8 runs. The table

154

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y

(m
s)

Time (seconds)

TCP MIN_BUF (1,0)

(a) MIN BUF(1,0)

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y

(m
s)

Time (seconds)

TCP MIN_BUF (1,3)

(b) MIN BUF(1,3)

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y

(m
s)

Time (seconds)

TCP MIN_BUF (2,0)

(c) MIN BUF(2,0)

These experiments were performed under the same conditions as described in Figure 3. Note that the maximum value of the y axis is 500 ms,
while it is 4500 ms in Figure 3.

Fig. 4. A comparison of the protocol latencies of 3 MINBUF configurations

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (30 Mb/s total bandwidth, 100ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (30 Mb/s total bandwidth, 50ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (30 Mb/s total bandwidth, 25ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (12 Mb/s total bandwidth, 100ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (12 Mb/s total bandwidth, 50ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (12 Mb/s total bandwidth, 25ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

The experiment was performed with a 30Mbs and 12Mbs bandwidth limit and with 100 ms, 50ms and 25 ms RTT. The vertical lines show the
200 and 500 ms delay thresholds. The x axis, which shows the protocol latency in milliseconds, is on a log scale.

Fig. 5. Protocol Latency Distribution of standard TCP, MINBUF(1, 0), MIN BUF(1, 3) and MIN BUF(2, 0) flows

shows that MINBUF flows have much lower average latency
and the deviation across runs is also much smaller.

B. Throughput Loss

We are interested in the throughput loss of MINBUF
streams. We measured the throughput of each of the flows as a
ratio of the total number of bytes received to the duration of the
experiment. Table III shows the normalized throughput of each
flow, which is the ratio of the throughput of the flow to the TCP
flow. Again, these numbers are the mean (and 95% confidence
interval) over 8 runs.

The table shows that the MINBUF(2, 0) flows receive
throughput close to standard TCP (within the confidence

range). MINBUF(2, 0) flows have CWND new packets that
can be sent after a packet transmission. So even if all current
CWND packets in flight are acknowledged almost simultane-
ously, TCP can send its entire next window of CWND packets
immediately. Thus we expect that MINBUF(2,0) flows should
behave similar to TCP flows.

The MIN BUF(1, 0) flows consistently receive the least
throughput, about 70 percent of TCP. This result is not surpris-
ing because TCP has no new packets in the send buffer that can
be sent after each packet is transmitted. TCP must ask the ap-
plication to write the next packet to the send buffer before it
can proceed with the next transmission. Thus, any scheduling
or other system delays would make the MINBUF(1, 0) flow
an application-limited flow. TCP assumes that such flows need

155

RTT = 100 ms RTT = 50 ms RTT = 25 ms
Mbs Type D200 D500 D200 D500 D200 D500
30 std 0.73 0.91 0.72 0.92 0.84 0.94
30 m10 0.99 1.00 0.99 1.00 1.00 1.00
30 m13 0.98 1.00 0.99 0.99 0.99 1.00
30 m20 0.91 0.99 0.97 0.99 0.99 1.00
12 std 0.53 0.80 0.62 0.88 0.60 0.86
12 m10 0.98 1.00 0.99 1.00 0.99 1.00
12 m13 0.95 0.99 0.99 1.00 0.98 1.00
12 m20 0.86 0.99 0.97 0.99 0.98 0.99

The terms std, m10, m13 and m20 refer to standard TCP,
MIN BUF(1, 0), MIN BUF(1, 3) and MIN BUF(2, 0) respectively.
The terms D200 and D500 refer to a delay threshold of 200 and 500
ms.

TABLE I
PERCENT OF PACKETS DELIVERED WITHIN200 AND 500 MS THRESHOLDS

FOR STANDARDTCP, MIN BUF(1, 0), MIN BUF(1, 3) AND

MIN BUF(2, 0) FLOWS

Mbs Type RTT = 100 ms RTT = 50 ms RTT = 25 ms
30 std 226.31±0.87 218.84±40.34 138.61±21.0
30 m10 62.91±0.96 37.09±0.80 19.71±0.89
30 m13 76.19±2.71 51.54±3.73 28.29±1.70
30 m20 152.14±9.13 89.74±5.32 48.21±2.19
12 std 369.22±50.32 260.27±23.15 296.25±47.49
12 m10 69.73±2.15 38.50±1.09 25.94±1.80
12 m13 91.42±6.81 49.17±2.03 39.08±3.39
12 m20 162.26±6.06 87.90±1.46 61.31±5.59

The terms std, m10, m13 and m20 refer to standard TCP,
MIN BUF(1, 0), MIN BUF(1, 3) and MIN BUF(2, 0) respectively.
All average latency numbers (together with 95% confidence intervals)
are shown in milliseconds.

TABLE II
AVERAGE LATENCY OF STANDARDTCP, MIN BUF(1, 0),

MIN BUF(1, 3) AND MIN BUF(2, 0) FLOWS

less bandwidth and reduces the window and thus the transmis-
sion rate of such flows.

Interestingly, the MINBUF(1, 3) flows receive throughput
close to TCP, about 90 percent of TCP or more. Three
additional packets in the send buffer (in addition to the
CWND packets in flight) seem to reduce the throughput loss
due to the artificial application-flow limitation introduced by
MIN BUF(1, 0) flows.

For a latency sensitive, quality-adaptive application, one met-
ric for measuring the average flow quality could be the product
of the percent of packets that arrive within a delay threshold
and the normalized throughput of the flow. This relative metric
is related to the number of packets that arrive within the delay
threshold across different flows. Thus a larger value of this met-
ric could imply better perceived quality. From the numbers pre-
sented above, MINBUF(1,3) flows have the highest value for
this quality metric because both their delay threshold numbers
(shown in Table I) and normalized throughput numbers (shown
in Table III) are close to the best numbers of other flows.

Mbs Type RTT = 100 ms RTT = 50 ms RTT = 25 ms
30 std 1.00 1.00 1.00
30 m10 0.66±0.11 0.71±0.08 0.76±0.10
30 m13 0.96±0.12 0.87±0.08 0.92±0.12
30 m20 1.02±0.18 1.13± 0.36 0.91±0.10
12 std 1.00 1.00 1.00
12 m10 0.67±0.09 0.76±0.05 0.89±0.11
12 m13 0.92±0.15 1.06±0.09 1.08±0.22
12 m20 1.13±0.16 1.08±0.14 1.12±0.17

The terms std, m10, m13 and m20 refer to standard TCP,
MIN BUF(1, 0), MIN BUF(1, 3) and MIN BUF(2, 0) respectively.
The normalized throughput (NT) is the ratio of throughput of each
flow to the ratio of a standard TCP flow.

TABLE III
THE NORMALIZED THROUGHPUT OF A STANDARDTCP FLOW AND

MIN BUF FLOWS

C. Understanding Worst Case Behavior

Figure 4 shows that MINBUF(1, 0) and MIN BUF(1, 3)
flows occasionally show protocol latency spikes even though
they have small send buffers. To understand the cause of these
spikes, we measured the delays experienced by each packet on
the sender side, in the network and on the receiver side.

Figure 6 shows these delays for a small part of the experiment
when packets were lost and retransmitted. The sender latency
of each packet is the time from when an application writes to the
socket to TCP’s first transmission of the packet. The network
delay is the time from the first transmission of each packet to the
first arrival at the receiver. The receiver latency is the time from
the first arrival of each packet to an application read. Figure 6
shows that the latency spikes are primarily caused by packet
losses and retransmissions. In particular, the protocol (or total)
latency does not depend significantly on the flow throughput
(or the congestion window size). For instance, the congestion
window size at t=35.5 ms and t=36.5 ms is 15 and 4, but the
total latency at these times is roughly the same.

Packet retransmissions initially cause the network delay to
increase, followed by an increase in the receiver latency. The
receiver latency increases because TCP delivers packets in or-
der and a lost packet temporarily blocks further packets from
being released to the application. In addition, the sender la-
tency increases slightly because TCP reduces its congestion
window after a packet loss. Thus packets that were already ac-
cepted into the send buffer are delayed. Note that after a packet
loss, increases in latency at the network, receiver and the sender
are typically not additive (for any given packet) since they are
shifted in time. However, this time shifting implies that the total
latency stays high for several packets after a packet is dropped.
These findings motivated the need to explore mechanisms that
can reduce packet dropping. One such mechanism that has been
studied by the networking community is explicit congestion no-
tification (ECN) [24], [28].

D. Protocol Latency with ECN

ECN enabled routers inform TCP senders of impending con-
gestion by setting an ECN bit on certain packets. When an ECN
enabled TCP sender receives such a packet, it takes pro-active

156

0

50

100

150

200

250

35.4 35.6 35.8 36 36.2 36.4 36.6

La
te

nc
y

in
 m

s

Packet Transmission Time (seconds)

Total Latency
Network Delay

0

50

100

150

200

250

35.4 35.6 35.8 36 36.2 36.4 36.6

La
te

nc
y

in
 m

s

Packet Transmission Time (seconds)

Sender Latency
Receiver Latency

0

1

R
et

ra
ns

m
is

si
on

s

Packet (Re)transmissions

0

4

8

12

16

20

35.4 35.6 35.8 36 36.2 36.4 36.6

T
C

P
 W

in
do

w
 S

iz
e

Packet Transmission Time (seconds)

Cwnd

This experiment was performed with a MINBUF(1, 0) flow. The
bandwidth limit is 30 Mbs and the RTT is 100 ms. All figures are
plotted as a function of the packet transmission time. These figures
show that the sender side latency is small for MINBUF(1, 0) flows
and that spikes in total latency occur primarily due to packet loss and
retransmissions.

Fig. 6. The packet delay on the sender side, the network and the receiver side

measures to reduce its sending rate to avoid packet dropping in
the router.

We ran the same set of experiments as described in Sec-
tion IV-A to measure and compare the protocol latency of ECN
flows and MINBUF (with ECN) flows. Figure 7 shows the
bandwidth profile of the competing traffic. Figures 8 and 9
show the comparative protocol latencies. These figures are gen-
erated from experiments that are similar to those shown in Fig-
ure 3 except we enabled ECN at the end points and used DRED
active queue management at the intermediate router.

These figures show that the protocol latency spikes are re-
duced in all cases when compared to Figure 4. A close look
at the raw data showed that ECN reduced packet dropping and
retransmissions and thus had fewer spikes. More experimen-
tal results for ECN can be found in an extended version of this
paper [8].

ECN in these experiments showed several interesting band-

0

10000

20000

30000

0 10 20 30 40 50 60 70 80

B
an

dw
id

th
 (

K
b/

s)

Time (seconds)

Elephants
Mice
CBR

Fig. 7. The bandwidth profile of the cross traffic (15 elephants, 80 mice
consuming about 50% bandwidth and 10% CBR traffic)

0

1000

2000

0 10 20 30 40 50 60 70 80

La
te

nc
y

(m
s)

Time (seconds)

ECN

(a) ECN

0

1000

2000

0 10 20 30 40 50 60 70 80

La
te

nc
y

(m
s)

Time (seconds)

ECN MIN_BUF (1,0)

(b) MIN BUF(1,0) with ECN

These figures show the protocol latency as a function of packet receive
time. The bandwidth limit for this experiment is 30 Mbs and the round
trip time is 100 ms. The horizontal lines on the figures show the 200
ms and 500 ms latency threshold.

Fig. 8. A comparison of the protocol latencies for ECN and MINBUF(1, 0)
streams

width related properties. First, the mouse bandwidth was tuned
to 50 percent of the bandwidth capacity as shown in Figure 7,
instead of 30 percent as shown in Figure 2. The mice were
able to achieve their bandwidth share quickly and more accu-
rately. With TCP, in some configurations (lower bandwidth and
smaller RTT), the mice were not able to achieve 50 percent
bandwidth share even when the application starts very large
numbers of mice. This is because the elephants are very ag-
gressive and the mouse are unable to connect for long peri-
ods of time. In addition, the ratio of mice to elephants needed
to achieve fair sharing between the mice and the elephants is
much smaller for ECN than with regular TCP flows. Thus, ele-
phants do not steal as much bandwidth from mice and also have
a smoother throughput profile (not shown here). We believe that

157

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y

(m
s)

Time (seconds)

ECN MIN_BUF (1,0)

(a) MIN BUF(1,0)

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y

(m
s)

Time (seconds)

ECN MIN_BUF (1,3)

(b) MIN BUF(1,3)

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y

(m
s)

Time (seconds)

ECN MIN_BUF (2,0)

(c) MIN BUF(2,0)

These experiments were performed under the same conditions as described in Figure 8. Note that the maximum value of the y axis is 500 ms,
while it is 2000 ms in Figure 8.

Fig. 9. A comparison of the protocol latencies of 3 MINBUF configurations

although ECN may loose throughput compared to TCP for long
lived flows, its reduced aggressiveness leads to fewer retrans-
missions and thus it is desirable for low latency streaming.

V. RELATED WORK

The feasibility of TCP-based stored media streaming has
been studied by several researchers. Generally, the tradeoff
in these QoS adaptive approaches is short-term improvement
in video quality versus long term smoothing of quality. Re-
jaie [26] uses layered video and adds or drops video stream
layers to perform long-term coarse grained adaptation, while
using a TCP-friendly congestion control mechanism to react to
congestion on short-time scales. Krasic [14] contends that new
compression practices and reduced storage costs make TCP
a viable and attractive basis for streaming stored content and
uses standard TCP, instead of a TCP-friendly scheme, for me-
dia streaming. Feng [4] and Krasic use priority-based stream-
ing, which allows a simpler and more flexible implementation
of QoS adaptation. We believe that similar QoS adaptive ap-
proaches will be useful for low latency streaming also.

Researchers in the multimedia and networking community
have proposed several alternatives to TCP for media stream-
ing [30], [6]. These alternatives aim to provide TCP-friendly
congestion control for media streams without providing reliable
data delivery and thus avoid the latency introduced by packet
retransmissions. Unfortunately, the effects of packet loss on
media streaming are non-uniform and can quickly become se-
vere. For instance, loss of the header bits of anI -frame in an
MPEG movie can render a large segment of surrounding video
data unviewable. Thus media applications over a lossy transport
protocol have to implement complex recovery strategies such as
FEC [27] that potentially have high bandwidth and processing
overhead. The benefit of FEC schemes for loss recovery is that
they often have lower latency overhead as compared to ARQ
schemes such as employed in TCP. Thus, Nonnenmacher [21]
explores introducing FEC as a transparent layer under an ARQ
scheme to improve transmission efficiency.

Popular interactive streaming applications include Voice over
IP (VoIP) products such as Microsoft NetMeeting [19]. Net-
Meeting provides reasonable voice quality over a best effort

network but is implemented over UDP because the delays intro-
duced by TCP are considered unacceptable. This paper shows
that MIN BUF TCP should yield acceptable delays, especially
for QoS adaptive applications. For interactive applications, ITU
G.114 [12] recommends 150 ms as the upper limit for one-way
delay for most applications, 150 to 400 ms as potentially toler-
able, and above 400 ms as generally unacceptable delay. The
one way delay tolerance for video conferencing is in a similar
range, 200 to 300 ms.

Our send-buffer adaptation approach is similar to the buffer
tuning work by Semke [29]. Semke tunes the send buffer size
to between 2∗CWND and 4∗CWND to improve the throughput
of a high bandwidth-delay connection that is otherwise limited
by the send buffer size. The 4∗CWND value is chosen to limit
small, periodic fluctuations in buffer size. This paper shows that
a connection can achieve throughput close to TCP throughput
by keeping the send buffer size slightly larger than CWND and
also achieve significant reduction in protocol latency.

Many differentiated network services have been proposed for
low latency streaming. These schemes are complementary to
our work since, generally, a MINBUF TCP implementation
can be used for the low delay flow. Hurley [10] provides a
low-delay alternative best-effort (ABE) service that trades high
throughput for low delay. The ABE service drops packets in
the network if the packets are delayed beyond their delay con-
straint. In this model, the client must recover from randomly
dropped packets. Further, unlike with TCP, the server does
not easily get back-pressure feedback information from the net-
work in order to make informed QoS adaptation decisions.

Active queue management and explicit congestion notifica-
tion (ECN) [24] have been proposed for improving the packet
loss rates of TCP flows. Salim [28] shows ECN has increas-
ing throughput advantage with increasing congestion levels and
ECN flows have hardly any retransmissions. Feng [3] shows
that adaptive active queue management algorithms (Adaptive
RED) and more conservative end-host mechanisms can signifi-
cantly reduce loss rates across congested links.

Claffy [1] presents the results of a measurement study of the
T1 NSFNET backbone and delay statistics. In 1992, the one
way median delays between end points ranges from 20 to 80
ms with a peak at 45 ms. Newer data in 2001 [9] shows that

158

the median RTT for East-coast to East-coast or West-coast to
West-coast is 25-50 ms and East-coast to West-coast is about
100 ms. We use these median results in our experiments. US to
Europe median RTT is currently 200 ms. While the 200 ms me-
dian RTT makes interactive applications challenging, respon-
sive control operations for streaming media should be possible.

VI. FUTURE WORK

The results in this paper are based on experiments conducted
over an experimental network test-bed. While simulating our
experiments under more exhaustive conditions using a network
simulator, such asns , would be useful, the task is not trivial be-
causens does not simulate the send buffer. Thus a simulator for
the send buffer would have to be implemented. In addition, we
are interested in observing whether scheduling and other timing
effects change the latency or throughput behavior of MINBUF
streams. Simulating such effects is beyond the scope ofns .

We have explored adapting the send buffer using three dif-
ferent sizes for MINBUF(A, B) flows. These different config-
urations, with increasing buffer sizes, have increasing latency
and throughput. Another approach for adapting the send buffer
is to auto-tune the values of A and B so that the send buffer
contributes a certain amount of delay while providing the best
possible throughput.

We are currently implementing a streaming quality-adaptive
media server that will allow channel surfing as well as basic
control operations such as fast forward, stop, rewind, etc. We
plan to compare the latency of these operations using standard
TCP versus MINBUF flows. We are also integrating a real-
time MPEG encoder into the media server, which will allow
us to investigate some of the challenges raised by low latency
streaming, including the handling of late packets.

VII. C ONCLUSIONS

The dominance of the TCP protocol on the Internet and its
success in maintaining Internet stability has led to several TCP-
based stored media-streaming approaches. These approaches
use a combination of client-side buffering and QoS adaptation
to overcome various problems that were considered inherent
with TCP-based media streaming.

The success of TCP-based streaming led us to explore the
limits to which TCP can be used for low-latency media stream-
ing. Low latency streaming allows responsive streaming con-
trol operations and sufficiently low latency streaming would
make interactive applications feasible. We examined adapting
the TCP send buffer size based on TCP’s congestion window
to reduce protocol latency or application perceived network la-
tency. Our results show that this simple idea reduces protocol
latency and significantly improves the number of packets that
can be delivered within 200 ms and 500 ms thresholds.

REFERENCES

[1] Kimberly C. Claffy, George C. Polyzos, and Hans-Werner Braun. Traffic
Characteristics of the T1 NSFNET Backbone. InINFOCOM, pages 885–
892, 1993.

[2] David D. Clark and David L. Tennenhouse. Architectural Considerations
for a New Generation of Protocols. InSIGCOMM Symposium on Com-
munications Architectures and Protocols, pages 200–208, Philadelphia,
PA, 1990.

[3] Wu-chang Feng, Dilip D. Kandlur, Debanjan Saha, and Kang S. Shin.
Techniques for Eliminating Packet Loss in Congested TCP/IP Networks.
Technical Report CSE-TR-349-97, U. Michigan, Nov 1997.

[4] Wu-Chi Feng, Ming Liu, Brijesh Krishnaswami, and Arvind Prabhudev.
A Priority-Based Technique for the Best-Effort Delivery of Stored Video.
In Proc. of SPIE Multimedia Computing and Networking Conference
(MMCN), January 1999.

[5] S. Floyd and V. Jacobson. Random Early Detection Gateways for Conges-
tion Avoidance.IEEE/ACM Transactions on Networking, 1(4):397–413,
August 1993.

[6] Sally Floyd, Mark Handley, and Eddie Kohler. Problem Statement for
DCP. Work in progress, IETF Internet Draft draft-floyd-dcp-problem-
00.txt, expires Aug 2002, Feb 2002.

[7] M. Gaynor. Proactive Packet Dropping Methods for TCP Gateways.
http://www.eecs.harvard.edu/˜gaynor/final.ps , Octo-
ber 1996.

[8] Ashvin Goel, Charles Krasic, Kang Li, and Jonathan Walpole. Support-
ing Low Latency TCP-Based Media Streams. Technical Report CSE-02-
002, Oregon Graduate Institute, March 2002.ftp://cse.ogi.edu/
pub/tech-reports/2002/02-002.ps.gz .

[9] Bradley Huffaker, Marina Fomenkov, David Moore, and kc claffy. Macro-
scopic Analyses of the Infrastructure: Measurement and Visualization of
Internet Connectivity and Performance. InA workshop on Passive and
Active Measurements, Amsterdam, April 2001.

[10] P. Hurley and J. Y. Le Boudec. A Proposal for an Asymmetric Best-Effort
Service. InProceedings of IEEE/IFIP IWQoS 1999, pages 132–134, May
1999.

[11] Gianluca Iannaccone, Martin May, and Christophe Diot. Aggregate Traf-
fic Performance with Active Queue Management and Drop from Tail.
ACM Computer Communication Review, 31(3), July 2001.

[12] International Telecommunication Union (ITU).Transmission Systems
and Media, General Recommendation on the Transmission Quality for an
Entire International Telephone Connection; One-Way Transmission Time.
Geneva, Switzerland, March 1993. Recommendation G.114, Telecommu-
nication Standardization Sector of ITU.

[13] V. Jacobson. Congestion Avoidance and Control. InACM SIGCOMM,
pages 314–329, Stanford, CA, August 1988.

[14] Charles Krasic, Kang Li, and Jonathan Walpole. The Case for Stream-
ing Multimedia with TCP. In8th International Workshop on Interactive
Distributed Multimedia Systems (iDMS 2001), pages 213–218, Sep 2001.
Lancaster, UK.

[15] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Ac-
knowledgment Options. Internet RFC 2018, October 1996.

[16] Matthew Mathis and Jamshid Mahdavi. Forward Acknowledgment: Re-
fining TCP Congestion Control. InACM SIGCOMM, 1996.

[17] J. McCann, S. Deering, and J. Mogul. Path MTU Discovery for IP version
6. Internet RFC 1981, August 1996.

[18] Microsoft Inc. Windows Media Player.http://www.microsoft.
com/windows/windowsmedia .

[19] Microsoft Inc. Windows NetMeeting.http://www.microsoft.
com/netmeeting .

[20] NIST. The NIST Network Emulation Tool.http://www.antd.
nist.gov/itg/nistnet .

[21] Jörg Nonnenmacher, Ernst W. Biersack, and Don Towsley. Parity-Based
Loss Recovery for Reliable Multicast Transmission.ACM/IEEE Trans-
actions on Networking, 6(4):349–361, 1998.

[22] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An Efficient
and Portable Web Server. InProceedings of the 1999 USENIX Technical
Conference, pages 199–212, Monterey, CA, June 1999.

[23] V. Paxson. End-to-End Internet Packet Dynamics. InACM SIGCOMM,
pages 139–152, September 1997.

[24] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Con-
gestion Notification (ECN) to IP. Internet RFC 3168, September 2001.

[25] Real Networks. RealPlayer Streaming Media Player.http://www.
real.com .

[26] Reza Rejaie, Mark Handley, and Deborah Estrin. Quality Adaptation
for Congestion Controlled Video Playback over the Internet. InACM
SIGCOMM, pages 189–200, 1999.

[27] Luigi Rizzo. Effective Erasure Codes for Reliable Computer Communi-
cation Protocols.ACM Computer Communication Review, 27, 1997.

[28] J. Hadi Salim and U. Almed. Performance Evaluation of Explicit Conges-
tion Notification (ECN) in IP Networks. Internet RFC 2884, July 2000.

[29] Jeffrey Semke, Jamshid Mahdavi, and Matthew Mathis. Automatic TCP
Buffer Tuning. InACM SIGCOMM, pages 315–323, 1998.

[30] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmis-
sion Protocol. Internet RFC 2960, Oct 2000.

159

APPENDIX I

Infopipes: An Abstraction for Multimedia Streaming. Andrew Black, Rainer Koster, Jie

Huang, Jonathan Walpole, and Calton Pu, Multimedia Systems (special issue on Multimedia

Middleware), 8(5), pp. 406-419, ACM / Springer-Verlag, 2002.

160

http://www.cs.pdx.edu/~walpole/papers/mms2002.pdf

Infopipes: an Abstraction for Multimedia Streaming

Andrew P. Black, Jie Huang, Rainer Koster,
Jonathan Walpole and

Calton Pu

Department of Computer Science and Engineering
OGI School of Science & Engineering
Oregon Health & Science University

20000 NW Walker Road
Beaverton, OR 97006-8921 USA

Technical Report Number CSE 02-001

Revised: 17

th

 April 2002

This paper has been accepted for publication in the ACM/Springer-Verlag

Multimedia Systems Journal. It will appear in a special issue on multimedia middleware that is

scheduled for publication in late 2002. References in the literature should be to

Multimedia Systems Journal.

161

Multimedia Systems (2002) 0:000�000

Infopipes: an Abstraction for Multimedia Streaming

Andrew P. Black

1

, Jie Huang

1

, Rainer Koster

2

, Jonathan Walpole

1

,

Calton Pu

3

1. Department of Computer Science & Engineering, OGI School of Science & Engineering, Oregon Health & Science University
2. Fachbereich Informatik, University of Kaiserslautern
3. School of Computing, Georgia Institute of Technology.

Abstract.

To simplify the task of building distributed
streaming applications, we propose a new abstraction for
information flow�Infopipes. Infopipes make information
flow primary, not an auxiliary mechanism that is hidden
away. Systems are built by connecting pre-defined compo-
nent Infopipes such as sources, sinks, buffers, filters, broad-
casting pipes, and multiplexing pipes. The goal of Infopipes
is not to hide communication, like an RPC system, but to

reify

 it: to represent communication explicitly as objects that
the program can interrogate and manipulate. Moreover, these
objects represent communication in application-level terms,
not in terms of network or process implementation.

Key words:

Quality of service � Streaming � Communi-
cation � Feedback � Real-rate systems

1 Introduction

Recent years have witnessed a revolution in the way people
use computers. In today�s Internet-dominated computing
environment, information exchange has replaced computa-
tion as the primary activity of most computers. This revolu-
tion began with the use of the world wide web for accessing
relatively static information. It has continued with the emer-
gence of streaming applications, such as video and music on
demand, IP-telephony, Internet radio, video conferencing and
remote surveillance systems. Recent traffic studies (Chesire
et al. 2001; Thompson et al. 1997) show that these applica-
tions are already major consumers of bandwidth on the Inter-
net and are likely to become dominant in the near future. The
advent of interconnected, embedded and sensor-based
systems will accelerate the development and deployment of
new streaming applications.

The salient characteristics of streaming applications are
their extensive use of communication among distributed
components and their real-time interaction with real-world
processes. Consequently, developers of streaming applica-

tions spend much of their time reasoning about the communi-
cations and I/O behaviour of their systems. This change of
emphasis from computation to communication is the motiva-
tion for our research.

This paper describes

Infopipes

, a new abstraction,
together with associated middleware and tools, for simplify-
ing the task of constructing streaming applications. The moti-
vation for developing Infopipes as middleware is to provide a
single set of abstractions with a uniform interface that can be
made available on a diverse set of hosts and devices. Wide
availability is important for streaming applications because,
by their nature, they tend to span many potentially heteroge-
neous computers and networks, and interact with many dif-
ferent devices. The abstractions must also be appropriate to
the problem domain: they should expose the primitives
useful in that domain, and control and hide the unnecessary
details.

The essence of streaming applications is creation and
management of information flows via producer-consumer
interactions among potentially distributed components.
Hence, communication is a primary concern and should be

exposed,

 not hidden. Moreover, it is application level infor-
mation that must be communicated, not low-level data, so
exposing low-level network abstractions is inappropriate.

Exposing the basic communication elements, such as
sources, sinks and routes, is inadequate: streaming applica-
tions are frequently also concerned with the quality of service
(QoS) of that communication. For example, the correct exe-
cution of a streaming media application is often critically
dependent on the available bandwidth between the server and
client. Adaptive applications may actively monitor this QoS
aspect and adapt the media quality dynamically to match
their bandwidth requirements to the available bandwidth
(Jacobs and Eleftheriadis 1998; Karr et al. 2001; McCanne et
al. 1997; Walpole et al. 1997). When constructing streaming
applications these timing and resource management-related
tasks tend to be the source of much of the complexity, since
they touch on aspects of the environment that differ among
applications, and even among different deployments of the
same application. In contrast, the computation-intensive
aspects of the application, such as media encoding andCorrespondence to: A.P.Black

162

2

decoding, can often be addressed using standard components.
The desire to reify communication rather than hide it is in

contrast to many distributed systems middleware platforms
that are based around remote procedure call (RPC) mecha-
nisms (ISO 1998; OMG 1998b; OSF 1991; Sun 2002). Of
course, it is also undesirable and unmanageable to expose all
of the underlying details of communication. In general, infor-
mation-flow application developers will not want to reimple-
ment low-level protocol functionality � such as marshalling,
fragmentation, congestion control, ordered delivery and
reliability � for every application they build. Thus, what we
would like to do is to find a way to factor and pre-package
such functionality so that it can be selected when needed to
ensure a particular property. This emphasis on component-
based composition and property composition is a central
characteristic of the Infopipe approach.

This approach to dealing with the complexities of com-
munication can be re-applied when dealing with the com-
plexities of scheduling computation. Since timing is critical
for many streaming applications, they need some way to
control it. However, it is neither desirable nor necessary to
expose application developers to all of the ugly details of
thread management, scheduling, and synchronization.
Instead we attempt to expose the QoS-related aspects of
scheduling and hide the unnecessary details.

Thus, our primary goal for Infopipes is to select a suitable
set of abstractions for the domain of streaming applications,
make them available over a wide range of hardware and
operating systems, and allow tight control over the properties
that are important in this domain while hiding the unneces-
sary details.

A further goal, which we discovered to be important
through our own experiences building real-time streaming
applications, is the ability to monitor and control properties
dynamically and in application-specific terms. This capabil-
ity enables applications to degrade or upgrade their behav-
iour

gracefully

 in the presence of fluctuations in available
resource capacity. Since graceful adaptation is an applica-
tion-defined concept it cannot be achieved using a one-size-
fits-all approach embedded in the underlying systems soft-
ware. The alternate approach of exposing system-level
resource-management information to application developers
introduces unnecessary complexity into the task of building
applications. Therefore, the goal for a middleware solution is
to map system-level resource management details into appli-
cation-level concepts so that adaptive resource management
can be performed by application components in application-
specific terms.

A final goal for Infopipe middleware is to support tools
that automatically check the properties of a composite
system. For example, important correctness properties for a
pipeline in a streaming application are that information be
able to flow from the source to the sink, that latency bounds
are not exceeded and that the quality of the information
meets the requirements. Even though individual Infopipe
components may exhibit the necessary properties in isolation,
it is often non-trivial to derive the properties of a system that
is composed from these components.

The remainder of this paper presents more detail about
our ongoing research on Infopipes. Section 2 discusses the

Infopipe model, loosely based on a plumbing analogy, and
describes the behaviour of various basic Infopipe compo-
nents. Section 3 discusses some of the properties that are
important for composite Infopipes and introduces some pre-
liminary tools we have developed. Section 4 discusses the
implementation. Some example Infopipe applications are
presented in section 5. Section 6 discusses related work, and
section 7 concludes the paper.

2 The Infopipe Model and Component Library

Infopipes are both a model for describing and reasoning
about information-flow applications, and a realization of that
model in terms of objects that we call Infopipe components.
It is central to our approach that these components are real
objects that can be created, named, configured, connected
and interrogated at will; they exist at the same level of
abstraction as the logic of the application, and this expose the
application-specific information flows to the application in
its own terms. For example, an application object might send
a method invocation to an Infopipe asking how many frames
have passed through it in a given time interval, or it might
invoke a method of an Infopipe that will connect it to a
second Infopipe passed as an argument.

An analogy with plumbing captures our vision: just as a
water distribution system is built by connecting together pre-
existing pipes, tees, valves and application-specific fixtures,
so an information flow system is built by connecting together
pre-defined and application-specific Infopipes. Moreover, we
see Infopipes as a useful tool for modelling not only the com-
munication of information from place to place, but also the
transformation and filtering of that information. The Infopipe
component library therefore includes processing and control
Infopipes as well as communication Infopipes. We can also
compose more complex Infopipes with hybrid functionality
from these basic components. Our goal is to provide a rich
enough set of components that we can construct information
flow networks, which we call Infopipelines, for a wide
variety of applications.

2.1 Anatomy of an Infopipe

Information flows into and out of an Infopipe through

Ports

;

push

 and

pull

 operations on these ports constitute the
Infopipe�s data interface. An Infopipe also has a control inter-
face that allows dynamic monitoring and control of its prop-
erties, and hence the properties of the information flowing
through it. Infopipes also support connection interfaces that
allow them to be composed,

i.e.

, connected together at run-
time, to form Infopipelines. The major interfaces required for
an object to be an Infopipe are shown in Fig. 1.

It is central to our approach that Infopipes are

composi-
tional

. By this we mean that the properties of a pipeline can
be calculated from the properties of its individual Infopipe
components. For example, if an Infopipe with a latency of
1 ms is connected in series with an Infopipe with a latency of
2 ms, the resulting pipeline should have a latency of 3 ms �
not 3.5 ms or 10 ms.

Compositionality requires that connections between com-
ponents are

seamless

: the cost of the connection itself must
be insignificant. Pragmatically, we treat a single procedure

163

3

call or method invocation as having insignificant cost. In
contrast, a remote procedure call, or a method that might
block the invoker, have potentially large costs: we do not
allow such costs to be introduced automatically when two
Infopipes are connected. Instead, we encapsulate remote
communication and flow synchronization as Infopipe com-
ponents, and require that the client include these components
explicitly in the Infopipeline. In this way the costs that they
represent can also be included explicitly.

Other properties may not compose so simply as latency.
For example, CPU load may not be additive: memory local-
ity effects can cause either positive or negative interference
between two filters that massage the same data. While we do
not yet have solutions to all of the problems of interference,
we do feel strongly that addressing these problems requires
us to be explicit about all of the stages in an information
flow.

2.2 Control Interfaces

The control interface of an Infopipe exposes and manages
two sets of properties: the properties of the Infopipe itself,
and the properties of the information flowing through it. To
see the distinction, consider an Infopipe implemented over a
dedicated network connection. The bandwidth of this
Netpipe is a property of the underlying network connection.
However, the actual data flow rate, although bounded by the
bandwidth, may vary with the demands of the application.

We regard both pipe and flow properties as control prop-
erties because they are clearly related. Indeed, expressing
pipe properties such as bandwidth in application-level terms
(

e.g.

, frames per second rather than bytes per second)
requires information about the flow.

Different kinds of Infopipe provide different control
interfaces. For example, we have

fillLevel

 for buffers and

slower

 and

faster

 for pumps. We are investigating the
properties and control information that should be maintained
in Infopipes and in information flows to support comprehen-
sive control interfaces.

2.3 Ports

To be useful as a component in an Infopipeline, an Infopipe
must have at least one

port

. Ports are the means by which
information flows from one Infopipe to another, and are cat-
egorized by the direction of information flow as either

Inports

 (into which information flows, indicated by the

symbol) or

Outports

 (from which information flows,

indicated by the symbol).
Each Infopipe has a set of named

Inports

 and a set of
named

Outports

; each port is owned by exactly one
Infopipe. For straight-line pipes, both the Inport set and the
Outport set have a single element, which is named

Primary

.

OutPorts

 have a method

anInPort

 that sets up a
connection to

anInPort

.

Infopipes

 also have a
method, which is defined as connecting the primary

OutPort

of the upstream pipe to the primary

 InPort

 of the down-
stream pipe.

Information can be passed from one Infopipe to another

Cloning

clone answers a disconnected copy of this Infopipe

Data

pull answers an item obtained from this Infopipe.

push: anItem push an item into this pipe

Connection

--> aPortOrInfopipe connect my Primary outport to aPortOrInfopipe

Port Access

inPort answers my Primary Inport

inPortAt: name answers my named inport

inPorts answers a collection containg all of my inports

outPort answers my primary Outport

outPortAt: name answers my named Outport

outPorts answers a collection containg all of my outports

nameOfInPort: anInPort answers the name of anInPort

nameOfOutPort: anOutPort answers the name of anOutPort

openInPorts answers a collection containing all of my Inports that are not connected

openOutPorts answers a collection containing all of my Outports that are not connected

Pipeline Access

allConnectedInfoPipes answers a collection containing all of the Infopipes in the same Infopipeline as myself.

inConnectedTo answers a collection containing all of the Infopipes that are directly connected to my Inports

outConnectedTo answers a collection containing all of the Infopipes that are directly connected to my Outports

push: anItem

↑ ack

QP

Fig. 2 . (a) Illustrates push mode communication; (b) illustrates pull
mode communication

SR

pull

↑ anItem
(a) (b)

–>>
–>>

164

4

in two ways. In

push mode

, the Outport of the upstream com-
ponent invokes the method

push: anItem

1

 on the Inport of
the downstream component, as shown in Fig. 2(a). In

pull
mode,

 shown in Fig. 2(b),

the situation is dual: the Inport of
the downstream component invokes the

pull

method of the
Outport of the upstream component, which replies with the
information item. The ports

P

 and

S

 (coloured in the
figure) invoke methods; we say that they are

positive

. Ports

Q

and

R

 (coloured) execute methods when invoked; we say
that they are

negative

. In a well-formed pipeline, connected
ports have opposite direction and opposite polarity. Any
attempt to connect, for example, an Inport to another Inport,
or a positive port to another positive port, should be rejected.

It is not obvious that Infopipes need the concept of port.
Indeed, our first prototypes of �straight line� Infopipes did
not have ports: a pipe was connected directly to its upstream
and downstream neighbours, and each pipe had two connec-
tion methods,

input:

 and

 output:

However, the introduc-
tion of

Tees

, that is, pipes with multiple inputs and outputs,
would have made the connection protocol more complex and
less uniform. Ports avoid this complexity, and turn out to be
useful in building

RemotePipes

and

CompositePipes

 as
well, as we shall explain later.

2.4 Common Components

Fig. 3 illustrates some Infopipe components.

Sources

 are
Infopipes in which the set of Inports is empty; whereas

Sinks

have an empty set of Outports.

Tees

 are Infopipes in which
one or both of these sets have multiple members. These ports
can be accessed by sending the Tee the messages

 inPortAt:

aName

 and

outPortAt: aName

; the ports can then be con-
nected as required. Figure 4 shows an example

.

In addition,
we can identify various other Infopipes.

 –

A

buffer

 is an Infopipe with a negative Inport, a negative
Outport, and some storage. The control interface of the
buffer allows us to determine how much storage it should
provide, and to ascertain what fraction is in use.

 –

A

pump

 is an Infopipe with a positive Inport and a posi-
tive Outport. Its control interface lets us set the rate at
which the pump should consume and emit information
items.

1. We follow the Smalltalk convention of using a colon (rather than paren-
thesis) to indicate where an argument is required. Often, as here, we will
provide an example argument with a meaningful name.

source buffer sink

pump

filter split tee merge tee

remote pipe

Fig. 3 . Some Infopipe components

"Create some Infopipes"
source := SequentialSource new.
pump := Pump new.
multicastTee := MulticastTee new.
mixTee := MixTee new.
sink := Sink new.

"Connect them"
source �>> pump �>> multicastTee.
(multicastTee outPortAt: #Primary) �>> (mixTee inPortAt: #Primary).
(multicastTee outPortAt: #Secondary) �>> (mixTee inPortAt: #Secondary).
mixTee �>> sink.

"Make data items flow."
pump startPumping: 1000.

"result pipeline"

Fig. 4 : Building a pipeline with Tees

165

5

 – A remote pipe is an Infopipe that transports information
from one address space to another. Although the
Infopipe abstraction is at a higher level than that of
address space, a middleware implementation must rec-
ognize that a host program executes in an address space
that is likely to encompass only part of the Infopipeline.
Remote pipes bridge this gap; the Inport and Outport of
a remote pipe exist in different address spaces, and the
remote pipe itself provides an information portal
between those address spaces.

Remote pipes can be constructed with different polari-
ties, reflecting the different kinds of communication
path. An IPCPipe between two address spaces on the
same machine might provide reliable, low-latency, com-
munication between a negative Inport and a positive
Outport; such a pipe emits items as they arrive from the
other address space. A Netpipe that connects two
address spaces on different machines has two negative
ports and provides buffering; items are kept until they
are requested by the next connected Infopipe in the
downstream address space.

An important aspect of component-based systems is the
ability to create new components by aggregating old ones,
and then to use the new components as if they were primi-
tive. Composite pipes provide this functionality; any con-
nected sub-network of Infopipes can be converted into a
CompositePipe, which clients can treat as a new primitive.

In order for clients to connect to a composite pipe in the
same way as to a primitive Infopipe, without knowing any-
thing about its internal structure, and indeed without
knowing that it is a composite rather than a primitive, a com-
posite pipe must have its own ports. We call these ports
ForwardedPorts. The ForwardedPorts are in one-to-one
correspondence with, but are distinct from, the open ports of
the sub-components. We cannot use the same object for the
ForwardedPort and the real port because the real port is
owned by the sub-component while the ForwardedPort is
owned by the CompositePipe itself. Figure 5 shows the
internal structure of a composite pipe. From the outside, it is
just an ordinary Infopipe with two Inports and two Outports.
Open ports of different sub-components may have the same
name, but their ForwardedPorts must have different names
because the ports of an Infopipe must be distinguishable.

One inevitable difference between composite and primi-
tive Infopipes is that the former need more complex initial-
ization: the internal structure of the Composite must be
established before it can be used. It is therefore convenient to
adopt a prototype-oriented style of programming, where a
Composite is first constructed and then cloned to create as

many instances as required. To support this style uniformly,
all Infopipes (not just composite pipes) have a clone
method, which makes a pipe-specific set of choices about
what parameters to copy and what parameters to re-initialize.
For example, when a Pump is cloned, the pumping rate is
copied from the prototype, but the ports of the clone are left
open.

3 From Pipes to Pipelines: Analysis & Tools

3.1 Polarity Checking and Polymorphism

The concept of port polarity introduced in section 2.3 is the
basis for several useful checks that an Infopipeline is well-
formed.

From the polarity of an Infopipe�s ports we can construct
an expression that represents the polarity of the Infopipe
itself. We use a notation reminiscent of a functional type sig-
nature. Thus, a buffer, which has a negative Inport and a neg-
ative Outport, has a polarity signature � → �, while a pump,
which has two positive ports, has signature + → +.

Whereas Buffers seem to be inherently negative and
Pumps inherently positive, some components can be mod-
elled equally well with either polarity. For example, consider
the function of a defragmenter that combines a pair of infor-
mation items into a single item. Such functionality could be
packaged as a � →+ Infopipe, which accepts a sequence of
two items pushed into its Inport and pushes a single item
from its Outport. However, the same functionality could also
be packaged as a + →� Infopipe, which pulls two items into
its Inport and replies to a pull request on its Outport with the
combined item.

Rather than having two distinct Infopipes with the same
functionality but opposite polarities, it is convenient to
combine both into a single component, to which we assign
the polarity signature . This should be read like a type
signature for a polymorphic function, with an implicit uni-
versal quantifier introducing the variable . It means that
the ports must have opposite polarities. For example, if a
filter with signature is connected to the Outport of a
pump with signature + → +, the would be instantiated as �
and the as +, and hence the filter would acquire the
induced polarity � → +.

The polarity-checking algorithm that we have imple-
mented is very similar to the usual polymorphic type check-
ing and inference algorithm used for programming
languages (Cardelli 1987). The main extension is the addi-
tion of a negation operation.

Fig. 5 : Internal Structure of a CompositePipe

Forwarded ports

Boundary of CompositePipe

α α→

α

α α→
α

α

166

6

3.2 Ensuring Information Flow

Polarity correctness is a necessary condition for information
to flow through a pipeline. For example, if two buffers (both
with signature � → �) were directly connected, it would
never be possible for information to flow from the first to the
second. The polarity check prohibits this. In contrast, a pipe-
line that contains a pump (with signature + → +) between the
two buffers will pass the polarity check, and will also permit
information to pass from the first buffer to the second.

However, polarity correctness is not by itself sufficient to
guarantee timely information flow. In studying these issues,
it is useful to think of an Infopipeline as an energy flow
system. Initially, energy comes from pumps, and other com-
ponents with only positive ports, such as positive sources.
Eventually, energy will be dissipated in buffers and sinks.

Components such as broadcast tees, which have signa-

ture , can be thought of as amplifying the energy in

the information flow, since every information item pushed
into the tee causes two items to be pushed out. However, a
switching tee, which redirects its input to one or other of its
two Outports, is not an amplifier, even though it has the same
polarity signature. This can be seen by examining the flows
quantitatively. If the input flow has bandwidth items/s,
aggregate output from the broadcast tee is items/s,
whereas from the switching tee it is items/s. Similar argu-
ments can be made for droppers and tees that aggregate infor-
mation; they can be thought of as energy attenuators.

From these considerations we can see that the �energy�
flow in a pipeline cannot be ascertained by inspection of the
polarities of the components alone. It is also necessary to
examine the quantitative properties of the flow through the
pipeline, such as information flow rates.

3.3 Buffering, Capacity and Cycles

So far, our discussions have focused on linear pipelines and
branching pipelines without cycles. However, we do not wish
to eliminate the possibility of cyclic pipelines, where outputs
are �recycled� to become inputs. Examples in which cycles
may be useful include implementation of chained block
ciphers, samplers, and forward error correction.

It appears that a sufficient condition to avoid deadlock
and infinite recursion in a cycle is to require that any cycle
contains at least one buffer. This condition can easily be
ensured by a configuration-checking tool. The polarity check
will then also ensure that the cycle contains a pump. How-
ever, this rule may not be a necessary condition for all possi-
ble implementations of pipeline components, and it remains
to be seen if it will disallow pipeline configurations that are
useful and would in fact function correctly.

Three other properties that one might like to ensure in a
pipeline are (1) that no information items are lost, unless
explicitly dropped by a component, (2) that the flow of infor-
mation does not block, and (3) that no component uses
unbounded resources. However, although it may be possible
to prove all of these properties for certain flows with known
rate and bandwidth, in general it is impossible to maintain all
three. This is because a source of unbounded bandwidth can

overwhelm whatever Infopipes we assemble to deal with the
flow � unless we allow them unbounded resources. We are
investigating the use of Queuing Theory models to do quick
checks on pipeline capacity.

3.4 The Infopipe Configuration Language

We have prototyped a textual pipeline configuration language
by providing Infopipe components with appropriate opera-
tors in the Smalltalk implementation. This can be viewed as
an implementation of a domain-specific language for pipe-
line construction by means of a shallow embedding in a host
language.

The most important operator for pipeline construction is
, which, as mentioned in section 2.3, is understood by

both Infopipes and Ports. This enables simple straight-line
infopipes to be built with one line of text, such as
SequentialSource new ->> (p := Pump new) ->> Sink
new. The ability to name the Inports and Outports of an
Infopipe explicitly permits us to construct arbitrary topolo-
gies with only slightly less convenience, as has already been
illustrated in Fig. 4.

Using an existing programming language as a host pro-
vides us with a number of benefits, including the use of host
language variables to refer to Infopipes, such as p in the
above example. Because Smalltalk is interactive, the
Infopipe programmer can not only start the pipeline (by
issuing the control invocation p startPumping), but can also
debug it using host language facilities. For example, p
inspectPipleine will open a window (shown in Fig. 6) that
allows the programmer to examine and change the state of
any of the Infopipes in the pipeline.

4 Implementation Issues

4.1 Threads and Pipes

One of the trickiest issues in implementing Infopipes is the
allocation of threads to a pipeline. Port polarity in the
Infopipe abstraction has a realtionship to threading, but the
relationship is not as simple as it may at first appear.

A component that is implemented with a thread is said to
be active. Clearly, a pump is active. In fact, any component
that has only positive ports must be active, for there is no

�
+

+

b
2b

b

Fig. 6 Inspecting a simple straight pipeline

–>>

167

7

other way in which it can acquire a thread to make invoca-
tions on other objects.

A very straightforward way of implementing a pump
with a frequency f Hz is to generate a new thread every
seconds, and to have each such thread execute the code

outport push: (inport pull)
exactly once. The objection to this approach is that it may
generate many threads unnecessarily, and thread creation is
often an expensive activity. Moreover, because it is possible
for many threads to be active simultaneously, every con-
nected component must behave correctly in the presence of
concurrency. In essence, this implementation gives each
information item its own thread, and may thus have good
cache locality.

An alternative approach is to give the pump a single
thread, and to have that thread execute

outport push: (inport pull).
strokeDelay wait

repeatedly, where strokeDelay wait suspends the caller for
the appropriate inter-stroke interval. However, with the usual
synchronous interpretation for method invocation, the pump
has no idea how long it will take to execute outport push:
or inport pull. Thus, it cannot know what delay is appro-
priate: the value of the delay is a property of the pipeline as a
whole, not a local property of the pump.

From the perspective of a particular component making a
synchronous invocation, the time that elapses between
invoking push: or pull on an adjacent component is an
interval in which it has �loaned� its thread to others in the
pipeline; we call this interval the thread latency. Note that
thread latency, like thread, is an implementation-level con-
cept, and is quite distinct from information latency, the time
taken for an information item to pass through a component.
Thread latency can be reduced by adding additional threads,
provided that sufficient CPU time is available, and the CPU
scheduler is willing to make it available. Information latency
is harder to reduce!

Consider a number of passive components I1, I2,� In,
that are connected in series. Suppose that each Ii has polarity
� → +, and that it performs some transformation on the
information that is pushed into it that takes time ti. The trans-
formed information item is then pushed into component Ii+1.
If all of the push messages are synchronous, the time that
elapses between invoking push: on I1 and receiving the

reply is given by .

Now suppose that a pump P is connected to the Inport of
I1, as shown in Fig. 7. If the required interval between
strokes of the pump, tp= , is less than , then the
single threaded version of the pump will be unable to main-
tain the specified frequency. It will be necessary to use mul-

tiple threads in the pump, and other components in the
pipeline will need to incorporate the appropriate synchroni-
zation code to deal correctly with this concurrency. (The
pump may also need to use multiple CPUs; this depends on
the proportion of during which the processor is actually
busy. If some of the In access external devices, may be
much greater than the CPU time used by In.)

Thread latency is an important
parameter not only for pumps but also
for other Infopipes. Consider a broad-
cast Tee that accepts an information
item at its negative Inport and repli-
cates it at two or more positive Out-
ports. This can be implemented with
two threads, which will give the Tee�s push: method the
lowest thread latency, zero threads, in which case the pushes
that the Tee performs on its downstream neighbours will be
serialized, or one thread, which can be used either to provide
concurrency at the Outports, or to reduce the Tee�s thread
latency at its Inport.

It should now be clear that allocating the right number of
threads to a pipeline is not an easy problem. If there are too
few, the pipeline may not satisfy its rate specification; if
there are too many, we may squander resources in unneces-
sary bookkeeping and synchronization. Application pro-
grammers are relieved of the task of thread allocation by
working with Pumps and similar high-level abstractions and
dealing instead with application domain concepts such as
stroke frequency. But this leaves the Infopipe implementa-
tion the responsibility to perform thread allocation.

We have considered two approaches. The first, which we
have prototyped, is entirely dynamic. Pump uses a timer to
wake up after the desired stroke interval. It keeps a stack of
spare threads; if a thread is available, it is used to execute the
stroke. If no thread is available, a new thread is created.
Once the thread has completed the stroke, it adds itself to the
stack (or deletes itself if the stack is full).

The second approach, which we have not yet imple-
mented, analyses the pipeline before information starts to
flow. The components adjacent to the pump are asked for
their thread latencies, the total thread latency for pull and
push is computed. If this is less than tp, we know that a single
thread should be sufficient, and simpler single threaded pipe-
line components can be utilized.

4.2 Creating Polymorphic Infopipes

A Polymorphic Infopipe must have methods for both pull
and push:, and the behaviour of these methods should be
coherent, in the sense that the transformation that the
Infopipe performs on the information, if any, should be the
same in each case.

Although Polymorphic Infopipes are clearly more useful
than their monomorphic instances, it is not in general a
simple matter to create push: and pull methods with the
required correspondence. Fig. 8 shows sample code for a
Defragmenter. We assume that the component has a method
assemble: i1 and: i2 that returns the composite item
built from input fragments i1 and i2. The pull method,
which implements the +→� funtionality, and the push:
method, which implements the � →+ funtionality, both use

1 f⁄

ttotal ti
i 1=

n

∑=

Fig. 7 : A pump drives a series of transformation Infopipes.

I1 I2 I3P

1 f⁄ ttotal

ttotal
tn

+

+

–

168

8

the assemble:and: method, but, even so, it is not clear how
to verify that pull and push: both do the same thing.

Indeed, a third implementation style is possible, provid-
ing the +→+ polarity; this is shown in Fig. 9. This Defrag-
menter understands neither pull nor push:, but instead has
an internal thread that repeatedly executes stroke.

It is clearly undesirable to have to write multiple forms of
the same code, particularly when there must be semantic
coherence between them. We can avoid this in various ways.

 – Most simply, we can eliminate polymorphic pipes com-
pletely. In this situation, the defragmenter would be writ-
ten with whatever polarity is simplest, probably +→�. If
a different polarity is required, this would be constructed
as a composition of more primitive infopipes. For exam-
ple, a buffer, a +→� defragmenter and a pump could be
composed to create a �→+ defragmenter.

 – The second approach is to use a layer of middleware to
�wrap� whichever method is most easily written by
hand, in order to generate the other methods. This is pos-
sible because the hand-written methods do not send mes-
sages to the adjacent components directly, but instead
use a level of indirection. For example, the Defragmenter
pull method sends pull to its own inport rather than
pull to the upstream component. A clever implementa-
tion of inport pull can actually wait for the upstream
component to send a push: message. We have explored
this solution in some depth (Koster et al. 2001b); when-
ever adjacent Infopipes do not need to be scheduled
independently of each other, they are run as coroutines in
the same thread, thus avoiding scheduling overhead.

 – A third possibility is to automatically transform the
source code, so that one version would be written by
hand and the others generated automatically. Even with
the simple example shown in Fig. 8, this seems to be
very hard; in the general case, we do not believe that it is
feasible. The difficulty is that the transformation engine
would need to �understand� all of the complexity of a
general-purpose programming language like Smalltalk or
C++.

 – It is possible that this objection could be overcome by

using a domain-specific source language, with higher-
level semantics and more limited expressiveness. From a
more abstract form of the method written in such a lan-
guage, it might be possible to generate executable code
in whatever form is required. This approach is currently
under investigation.

4.3 Netpipes

Netpipes implement network information flows using what-
ever mechanisms are appropriate to the underlying medium
and the application. For example, we have built a low-
latency, unreliable Netpipe using UDP.

A Netpipe has the same polarity and data interface as a
buffer; this models the existence of buffering in the network
and in the receiving socket. However, the control interface of
a Netpipe is different, since it reflects the properties of the
underlying network. For example, the latency of a Netpipe
depends on the latency of its network connection and the
capacity of its buffer.

The motivation for Netpipes to allow Infopipe middle-
ware components in two different address spaces to connect
to each other. It is certainly true that an existing distributed
computing platform, such as remote method invocation or
remote procedure call, would allow such connections. How-
ever, if we used such a platform, we could be hiding the com-
munication between the address spaces, and thus giving up
any ability to control it � which was the reason that we orig-
inally created Infopipes. We would also be violating the
seamless connection property described in section 2.1.

However, it is not necessary to reimplement an entire dis-
tributed computing environment in order to retain control
over the information flow in a Netpipe. Instead, we have
bootstraped the Netpipe implementation by using the features
of an existing environment, such as naming and remote
method invocation.

A Netpipe is an Infopipe with an Inport in one address
space and an Outport in another, as shown in Fig. 10. This
means that the Inport can be in the same address space as its
upstream neighbour, and thus invocations of push: can use
seamless local mechanisms for method invocation. Similarly,
the Outport is in the same address space as its downstream

Defragmenter��pull
| item1 item2 |
item1 := inport pull.
item2 := inport pull.
↑ self assemble: item1 and: item2.

Defragmenter��push:item
isFirst

ifTrue: [buffer := item]
ifFalse: [

outport push:
(self assemble: buffer and: item)].

Fig. 8 : Methods of a polymorphic defragmenter

Defragmenter��stroke
| item1 item2 |
item1 := inport pull.
item2 := inport pull.
outport put: (self assemble: item1

and: item2)

Defragmenter��startPumping: period
self strokeInterval: period.
[[self stroke.

strokeDelay wait] repeatForever] fork

Fig. 9 : Defragmenter in the + →→→→ + style

169

9

neighbour, which can seamlessly invoke pull on the Net-
pipe. The Netpipe object itself, containing the buffering and
the code, is co-located with the Outport.

Our prototyping environment, Squeak Smalltalk (Guz-
dial 2001; Squeak 2000), is equipped with a remote method
invocation package called S2S, which stands for �Squeak to
Squeak�. S2S provides access transparency and location
transparency in a similar way to CORBA and Java RMI. A
local proxy can be created for a remote objects; the proxy
can then be invoked without callers needing to be aware that
they are really using a remote object�except that the call is
several orders of magnitude slower.

We take care that we use S2S only to configure and name
Infopipe components, and not for transmitting information
through the pipeline. For example, a Netpipe uses S2S to
create an Inport on the remote machine, and an S2S proxy
for this inport is stored in the Netpipe. However, when the
Inport needs to push information into the Netpipe, it uses a
custom protocol implemented directly on UDP.

In this way we arrange that Infopipes exhibit access
transparency: the same protocol is used to establish local
and remote Infopipe connections. However, we choose not to
provide location transparency: connections between adja-
cent Infopipes must be local, and the method checks
explicitly that the ports that it is about to connect are co-
located. Without this check, ports in different address spaces
could be connected directly: information would still flow
through the pipeline, but the push: or pull of each item
would require a remote method invocation. As well as being
very much less efficient, this would mean that the applica-
tion would have no control over network communication.

Instead of signalling an error in the face of an attempt to
connect non-co-located ports, an alternative solution would
be to introduce a Netpipe automatically. We have not
pursued this alternative, because in practice it is usually
important for the programmer to be aware of the use of the
network. For example, it may be necessary to include
Infopipe components to monitor the available QoS and adapt
the information flow over the Netpipe accordingly.

Fig. 11 shows the code for setting up a MIDI pipeline
using a Netpipe. The first two statements obtain S2S proxies
for the source and pump objects that already exist on a
remote machine called MusicStore. We will refer to these
proxies as s and p, The third statement builds a Netpipe
from MusicStore to the local machine. The fifth statement,

source �>> pump �>>�, constructs the pipeline. It is inter-
esting to see in detail how this is accomplished.

The invocation is sent to source, which is a local
proxy for remote object s. S2S translates this into a remote
method invocation on the real object s on MusicStore.
Moreover, because the argument, pump, is a proxy for p, and
p is co-located with s, S2S will present p (rather than a
proxy for pump) as the argument to the invocation. The
method for �>> will then execute locally to both s and p, cre-
ating a connection with no residual dependencies on the
machine that built the pipeline.

A similar thing happens with netPipe. Although
netPipe itself is local, its Inport is on the host MusicStore.
Thus, the connection between p and netPipe�s Inport is
also on MusicStore. Information transmitted between
netPipe�s Inport and OutPort does of course traverse the
network, but it does not use S2S; it uses a customized trans-
port that is fully encapsulated in and controlled by netPipe.

4.4 Smart Proxies

When information flows from one address space to another,
it is necessary not only to agree on the form that the informa-
tion flow should take, but also to install the Infopipe
components necessary to construct that flow. For example, a
monitoring application that produces a video stream from a
camera should be able to access a logging service that
records a video in a file as well as a surveillance service that
scans a video stream for suspicious activity. In the case
where the video is sent to a file, the file sink and the camera
might be on the same machine, and the communication
between them might be implemented by a shared-memory
pipe. In the case of the surveillance application, the

Fig. 10 : Working with a Netpipe

a netpipe

a proxy of
the in-port

remote message
passing in S2Sconnection

between Infopipes

machine Bmachine A
data flow
in UDP

the in-port of
the netpipe

–>>

source := 's2s://MusicStore/source1' asRemoteOjbect.
pump := 's2s://MusicStore/pump1' asRemoteObject.
netPipe := Netpipe from: 's2s://MusicStore/'.
sink := MIDIPlayer new.
source �>> pump �>> netPipe �>> sink.
monitor := Monitor monitored: netPipe

controlled: pump.
pump startPumping: 100.
monitor startMonitoring: 1000.
sink startPlaying.

Fig. 11 : Code for a streaming MIDI pipeline

–>>

–>>

170

10

communication could involve a Netpipe with compression,
encryption and feedback mechanisms over the Internet.

Notice that the Infopipe components that need to be co-
located with the camera are different in these two cases.
Since we wish to allow Infopipes to be dynamically estab-
lished, we must address the problem of how such compo-
nents are to be installed and configured.

Koster and Kramp proposed to solve this problem in a
client-server environment by using dynamically loadable
Smart Proxies (Koster and Kramp 2000). Their idea is that
the server functionality is partly implemented on the client
node; this enables the server to control the network part of
the pipeline, as shown in Fig. 12. At connection setup, the
server chooses a communication mechanism based on infor-
mation about the available resources. A video server, for
instance, could use shared memory if it happens to be on the
same node as the client, a compression mechanism and UDP
across the Internet, or raw Ethernet on a dedicated LAN. It
then transmits the code for a Smart Proxy to the address
space containing the client. In this way, application specific
remote communication can be used without making the
network protocol the actual service interface; that would be
undesirable because all client applications would have to
implement all protocols used by any server to which they
may ever connect. Smart Proxies enable the service interface
to be described at a high level using an IDL. Client applica-
tions can be programmed to this interface as if the server
were local, although they actually communicate with the
proxy.

The idea of Smart Proxies can be generalized and applied
to Infopipes (Koster et al. 2001a). Since there are high-level
interfaces between all elements of a pipeline, the granularity
of composition can be finer. It is not necessary to send to the
consumer address space a monolithic proxy implementing

every transformation that needs to be performed on the infor-
mation stream. Instead, it may be possible to compose the
required transformation from standard pipeline elements that
may already be available on the consumer side. Thus, it is
sufficient to send a description or blueprint of the required
proxy, and if necessary to send small specialized Infopipes
that implement those pieces of the pipeline that are not
already available.

5 Some Example Infopipelines

5.1 The Quasar Video Pipeline

The Quasar video pipeline is a player for adaptive MPEG
video streaming over TCP. It supports QoS adaptation in both
temporal and spatial dimensions. MPEG-1 video is
transcoded into SPEG (Krasic and Walpole 1999) to add
spatial scalability through layered quantization of DCT data.
To suit the features of TCP, MPEG video is delivered in a pri-
ority-progress stream (Krasic et al. 2001), which is a
sequence of packets, each with a timestamp and a priority.
The timestamps expose the timeliness requirements of the
stream, and allow progress to be monitored; the priorities
allow informed dropping in times of resource overload.

The Quasar video pipeline is shown as an Infopipeline in
Fig. 13. At the producer side (the top part of the figure), the
video frames first flow through an SPEG transcoding filter,
and are buffered. The QoS mapper pulls them from the buffer
and gives each packet a priority according to the importance
of the packet and the preference of the user. For example, the
user might be more concerned with spatial resolution than
with frame rate, or vice versa. A group of prioritized packets
are pushed in priority order into the Reordering buffer. The
Dropper is a filter that discards stale packets, and low priority
packets, when the network is unable to deliver them in time.

The producer and consumer pipelines are connected by a
TCP Netpipe. On the consumer side (at the bottom of the
figure) the Reordering buffer arranges packets in time order.
The Detranscoder and decoder are filters that convert the
packets to MPEG and then to image format, after which they
are pushed into the Playing buffer. The Synchronizer pulls
them from that buffer at the time that they are required, and
presents them to the Video sink. The audio stream is handled

SkeletonStubClient Server

ServerClient
Smart
Proxy

Fig. 12 : Smart Proxies

�
��	
�����
����
�� ���
��

�
��
�

�
��
�
�
��	
�����

����
��

��	
�������
�

��	��������
�

������������	
��
��������
�

������
��

����������
��

��	
����� �

��	������ �

	
��	
���
�������	
�� ��������
����
��

!!��������������

����

171

11

in a similar way; the two streams are merged and split using
Tees. The Controller coordinates the rates of all the compo-
nents through control interfaces.

5.2 The MIDI Pipeline

The MIDI pipeline (see Fig. 14) was built using some exist-
ing libraries from the Squeak Smalltalk system. The Squeak
MIDI player buffered an entire MIDI file before playing it.
We adapted this player to deal with streaming data and
wrapped it as three Infopipe components: the MIDISource,
the MIDIFilter, and the MIDISink.

The MIDISource reads �note-on� and �note-off� com-
mands from a MIDI file; the MIDIFilter combines a note-on
command and its corresponding note-off command to gener-
ate a note event, which consists of a key and its duration. The
MIDISink plays a stream of note events. To make the MIDI
player stream over the Internet, we needed only to insert two
pre-existing Infopipe components: a pump and a UDP net-
pipe. To ensure that the MIDISink plays smoothly, we added
a controller that monitors the fill level of the Netpipe and
adjusts the pumping rate accordingly. In this prototype, the
connections to the controller were not implemented using
Infopipes; whether they should be is an open question.
Instead, we used direct method invocation, which means that
invocations from the controller to the pump used S2S, which
is very much slower than an Infopipe. We found that a buffer
sufficient to hold 30 note events produced smooth playout
while still minimizing the number of control messages.

6 Related Work

Some related work aims at integrating streaming services
with middleware platforms based on remote method invoca-
tions such as CORBA. The CORBA Telecoms specification
(OMG 1998a) defines stream management interfaces, but
not the data transmission. Only extensions to CORBA such
as TAO�s pluggable protocol framework allow the use of dif-
ferent transport protocols and, hence, the efficient imple-
mentation of audio and video applications (Mungee et al.
1999). Asynchronous messaging (OMG 2001a) and event
channels (OMG 2001b) allow evading the synchronous
RMI-based interaction and introduce the concurrency
needed in an information pipeline. Finally, Real-time
CORBA (OMG 2001a; Schmidt and Kuhns 2000), adds pri-
ority-based mechanisms to support predictable service
quality end to end. As extensions of an RMI-based architec-
ture these mechanisms facilitate the integration of streams
into a distributed object system. Infopipes, however, provide
a high-level interface tailored to information flows and more
flexibility in controlling concurrency and pipeline setup.

Structuring data processing applications as components
that run asynchronously and communicate by passing on
streams of data items is a common pattern in concurrent pro-
gramming (see, for example, reference (Lea 1997)). Flow-
Based Programming applies this concept to the development
of business applications (Morrison 1994). While the flow-
based structure is well-suited for building multimedia appli-
cations, it must be supplemented by support for timing
requirements. Besides integrating this timing control via
pumps and buffers, Infopipes facilitate component develop-
ment and pipeline setup by providing a framework for com-
munication and threading.

QoSDREAM uses a two-layer representation to construct
multimedia applications (Naguib and Coulouris 2001). On
the model layer, the programmer builds the application by
combining abstract components and specifying their QoS
properties. The system then maps this description to the
active layer consisting of the actual executable components.
The setup procedure includes integrity checks and admission
tests. The active-layer representation may be more fine-
grained than the model specification introducing additional
components such as filters, if needed. In this way, the system
supports partially automatic configuration. While the current
Infopipe implementation provides less sophisticated QoS
control, it provides a better modelling of flow properties by
explicitly using pumps and buffers.

Blair and co-workers have proposed an open architecture
for next-generation middleware (Blair et al. 1998; Eliassen
et al. 1999). They present an elegant way to support open
engineering and adaptation using reflection, a technique bor-
rowed from the field of programming languages (Blair and
Coulson 1998). In their multimedia middleware system,
TOAST (Eliassen et al. 2000; Fitzpatrick et al. 2001) they
reify communication through open bindings, which are
similar to our remote pipes. The scope of this work is wider
than that of Infopipes, which are specialized for streaming
applications.

The MULTE middleware project also features open bind-
ings (Eliassen et al. 2000; Plagemann et al. 2000) and sup-
ports flexible QoS (Kristensen and Plagemann 2000). It
provides applications with several ways to specify QoS
using a mapping or negotiation in advance to translate
among different levels of QoS specification. In our approach
we typically use dynamic monitoring and adaptation of QoS
at the application-level to implicitly manage resource-level
QoS.

Ensemble (van Renesse et al. 1997) and Da CaPo (Vogt et
al. 1993) are protocol frameworks that support the composi-
tion and reconfiguration of protocol stacks from modules.
Both provide mechanisms to check the usability of configu-
rations and automatically configure the stacks. Unlike these
frameworks for local protocols, Infopipes use a uniform
abstraction for handling information flows from source to
sink, possibly across several network nodes; the Infopipe
setup is controlled by the application. A similarity is that both
allow for dynamic configuration: protocol frameworks
dynamically (re-)configure protocol stacks between a
network interface and an application interface, while Smart
Proxies dynamically construct part of an Infopipeline
between a client-side service interface and a remote server,
providing protocol-independent service access.

MIDISink MIDIFilter Pump Netpipe

Controller

MIDISource

Fig. 14 : The MIDI pipeline

172

12

The Scout operating system (Mosberger and Peterson
1996) combines linear flows of data into paths. Paths provide
an abstraction to which the invariants associated with the
flow can be attached. These invariants represent information
that is true of the path as a whole, but which may not be
apparent to any particular component acting only on local
information. This idea�providing an abstraction that can be
used to transmit non-local information�is applicable to
many aspects of information flows, and is one of the princi-
ples that Infopipes seek to exploit. For instance, in Scout
paths are the unit of scheduling, and a path, representing all
of the processing steps along its length, makes information
about all of those steps available to the scheduler.

7 Summary and Future Work

Infopipes are a subject of continuing research; the work
described here does not pretend to be complete, although
early results have been encouraging. The applications that
have driven the work described here have primarily been
streaming video and audio. However, Infopipes also form
part of the communications infrastructure of the Infosphere
project (Liu et al. 2000; Pu et al. 2001), and we intend that
Infopipes are also useful for applications such as environ-
mental observation and forecasting (Steere et al. 2000) and
continual queries (Liu et al. 1999).

We have been pursuing three threads of research simulta-
neously. The first, which pre-dates the development of
Infopipes themselves, is the design and implementation of a
series of video players that stream video over the Internet,
adapting their behaviour to make the best possible use of the
available bandwidth (Cen et al. 1995; Cowan et al. 1995;
Inouye et al. 1997; Koster 1996; Krasic and Walpole 2001;
Staehli et al. 1995). The second thread is related to the under-
lying technologies that support streaming media, in particu-
lar, adaptive and rate-sensitive resource scheduling (Li et al.
2000; Steere et al. 1999a; Steere et al. 1999b) and congestion
control (Cen et al. 1998; Li et al. 2001a; Li et al. 2001b). It is
these technologies that enable us to design and build the
Infopipes that are necessary for interesting applications.

The final thread is a prototyping effort that has explored
possible interfaces for Infopipes in an object-oriented setting.
We have used Squeak Smalltalk as a research vehicle; this
has been a very productive choice, as it enabled us to quickly
try out � and discard � many alternative interfaces for
Infopipes before settling on those described here. The Squeak
implementation is not real-time, but it is quite adequate for
the streaming MIDI application (section 5.2).

We are currently embarked on the next stage of this
research, which involves weaving these threads together into
a fabric that will provide a new set of abstractions for stream-
ing applications. We are in the process of using the Infopipe
abstractions described here to re-implement our video pipe-
lines on a range of platforms including desktop, laptop and
wireless handheld computers as well as a mobile robot. We
are also exploring kernel-level support for Infopipes under
Linux, with a view to providing more precise timing control
and an application-friendly interface for timing-sensitive
communication and device I/O.

Acknowledgements. This work was partially supported by DARPA/ITO
under the Information Technology Expeditions, Ubiquitous Computing,
Quorum, and PCES programs, by NSF Grant CCR-9988440, by the Mur-
dock Trust, and by Intel. We thank Paul McKenney for useful discussions
and Nathanael Schärli for help with the Squeak graphics code.

References

Blair GS, Coulson G (1998) The case for reflective middleware. Internal re-

port MPG-98-38, Distributed Multimedia Research Group, Department

of Computing, Lancaster University, Lancaster, UK

Blair GS, Coulson G, Robin P, Papathomas M (1998) An Architecture for

Next Generation Middleware. In: Davies N, Raymond K, Seitz J, eds.

IFIP International Conference on Distributed Systems Platforms and

Open Distributed Processing (Middleware' 98), Lake District, UK.

Springer Verlag

Cardelli L (1987). Basic Polymorphic Typechecking. Science of Computer

Programming 8(2)

Cen S, Pu C, Staehli R, Cowan C, Walpole J (1995) A Distributed Real-Time

MPEG Video Audio Player. Fifth International Workshop on Network

and Operating System Support of Digital Audio and Video (NOSS-

DAV'95), Durham, New Hampshire, USA. Lecture Notes in Computer

Science Vol. 1018. Springer Verlag

Cen S, Pu C, Walpole J (1998) Flow and Congestion Control for Internet

Streaming Applications. Proceedings Multimedia Computing and Net-

working (MMCN98)

Chesire M, Wolman A, Voelker GM, Levy HM (2001) Measurement and

Analysis of a Streaming Media Workload. USENIX Symposium on In-

ternet Technologies and Systems (USITS), San Francisco, CA, USA

Cowan C, Cen S, Walpole J, Pu C (1995). Adaptive Methods for Distributed

Video Presentation. ACM Computing Surveys 27(4):580-583

Eliassen F, Andersen A, Blair GS, et al. (1999) Next Generation Middle-

ware: Requirements, Architecture, and Prototypes. 7th Workshop on

Future Trends of Distributed Computing Systems (FTDCS'99), Cape

Town, South-Africa

Eliassen F, Kristensen T, Plagemann T, Raffaelsen HO (2000) MULTE-

ORB: Adaptive QoS Aware Binding. International Workshop on Re-

flective Middleware (RM 2000), New York, USA

Fitzpatrick T, Gallop J, Blair G, Cooper C, Coulson G, Duce D, Johnson I

(2001) Design and Application of TOAST: An Adaptive Distributed

Multimedia Middleware Platform. Interactive Distributed Multimedia

Systems (IDMS 2001), Lancaster, UK. Lecture Notes in Computer Sci-

ence Vol. 2158. Springer Verlag

Guzdial M (2001) Squeak: Object-oriented Design with Multimedia Appli-

cations. Upper Saddle River, NJ: Prentice Hall

Inouye J, Cen S, Pu C, Walpole J (1997) System Support for Mobile Multi-

media Applications. 7th International Workshop on Network and Oper-

ating Systems Support for Digital Audio and Video (NOSSDAV 97), St.

Louis, Missouri

173

13

ISO (1998) Information Technology: Open Distributed Processing. ISO

Standard ISO/IEC 10746, International Standards Organization

Jacobs S, Eleftheriadis A (1998). Streaming video using dynamic rate shap-

ing and TCP flow control. Journal of Visual Communication and Image

Representation

Karr DA, Rodrigues C, Loyall JP, Schantz RE, Krishnamurthy Y, Pyarali I,

Schmidt DC (2001) Application of the QuO Quality-of-Service Frame-

work to a Distributed Video Application. International Symposium on

Distributed Objects and Applications, Rome, Italy

Koster R.(1996) Design of a Multmedia Player with Advanced QoS Control

[M.S. Thesis]. Oregon Graduate Institute of Science & Technology,

Beaverton, OR, USA

Koster R, Black AP, Huang J, Walpole J, Pu C (2001a) Infopipes for Com-

posing Distributed Information Flows. International Workshop on Mul-

timedia Middleware. ACM Press

Koster R, Black AP, Huang J, Walpole J, Pu C (2001b) Thread Transparen-

cy in Information Flow Middleware. In: Guerraoui R, ed. Middleware

2001—IFIP/ACM International Conference on Distributed Systems

Platforms, Heidelberg, Germany. Lecture Notes in Computer Science

Vol. 2218. Springer Verlag

Koster R, Kramp T (2000) Structuring QoS-supporting services with Smart

Proxies. Second International Conference on Distributed Systems Plat-

forms and Open Distributed Processing (Middleware 2000). Lecture

Notes in Computer Science Vol. 1795. Springer Verlag

Krasic B, Walpole J (2001) Priority-Progress Streaming for Quality-Adap-

tive Multimedia. ACM Multimedia Doctoral Symposium, Ottawa,

Canada

Krasic C, Li K, Walpole J (2001) The Case for Streaming Multimedia with

TCP. 8th International Workshop on Interactive Distributed Multime-

dia Systems — iDMS 2001, Lancaster, UK. Lecture Notes in Computer

Science Vol. 2158. Springer Verlag

Krasic C, Walpole J (1999) QoS Scalability for Streamed Media Delivery.

Technical Report CSE-99-11, Department of Computer Science & En-

gineering, Oregon Graduate Institute, Beaverton, OR

Kristensen T, Plagemann T (2000) Enabling Flexible QoS Support in the

Object Request Broker COOL. IEEE ICDCS International Workshop

on Distributed Real-Time Systems (IWDRS 2000), Taipei, Taiwan, Re-

public of China

Lea D (1997) Concurrent Programming in Java. Addison-Wesley

Li K, Krasic C, Walpole J, Shor M, Pu C (2001a) The Minimal Buffering

Requirements of Congestion Controlled Interactive Multimedia Appli-

cations. 8th International Workshop on Interactive Distributed Multi-

media Systems — iDMS 2001, Lancaster, UK. Lecture Notes in Com-

puter Science Vol. 2158. Springer Verlag

Li K, Shor M, Walpole J, Pu C, Steere D (2001b) Modeling the Effect of

Short-term Rate Variations on TCP-Friendly Congestion Control Be-

havior. American Control Conference, Alexandria, Virginia

Li K, Walpole J, McNamee D, Pu C, Steere DC (2000) A Rate-Matching

Packet Scheduler for Real-Rate Applications. Multimedia Computing

and Networking Conference (MMCN'2000), San Jose, California

Liu L, Pu C, Schwan K, Walpole J (2000). InfoFilter: Supporting Quality of

Service for Fresh Information Delivery. New Generation Computing

Journal 18(4)

Liu L, Pu C, Tang W (1999). Continual Queries for Internet Scale Event-

Driven Information Delivery. IEEE Transactions on Knowledge and

Data Engineering 11(4)

McCanne S, Vetterli M, Jacobson V (1997). Low-complexity video coding

for receiver-driven layered multicast. IEEE Journal on Selected Areas

in Communications 16(6):983–1001

Morrison JP (1994) Flow-Based Programming : A New Approach to Appli-

cation Development. Van Nostrand Reinhold

Mosberger D, Peterson LL (1996) Making paths explicit in the Scout oper-

ating system. Second USENIX symposium on Operating systems de-

sign and implementation (OSDI).

Mungee S, Surendran N, Krishnamurthy Y, Schmidt DC (1999) The Design

and Performance of a CORBA Audio/Video Streaming Service. Ha-

waiian International Conference on System Sciences (HICSS), Hawaii

Naguib H, Coulouris G (2001) Towards automatically configurable multi-

media applications. International Workshop on Multimedia Middle-

ware, Ottawa, Canada

OMG (1998a) CORBA telecoms specification. Object Management Group,

Framingham, MA, USA. http://www.omg.org/cgi-bin/doc?formal/98-

07-12

OMG (1998b) CORBA/IIOP 2.3 Specification. OMG Document formal/

98-12-01, Object Management Group, Framingham, MA, USA. http://

www.omg.org/

OMG (2001a) The Common Object Request Broker: Architecture and

Specification. Object Management Group, Framingham, MA, USA. ht-

tp://www.omg.org/cgi-bin/doc?formal/01-09-34

OMG (2001b) Event service specification. Object Management Group,

Framingham, MA, USA. http://www.omg.org/cgi-bin/doc?formal/01-

03-01

OSF (1991) Remote Procedure Call in a Distributed Computing Environ-

ment: A White Paper. Open Software Foundation

Plagemann T, Eliassen F, Hafskjold B, Kristensen T, Macdonald RH, Ra-

faelsen HO (2000) Managing Cross-Cutting QoS Issues in MULTE

Middleware. ECOOP Workshop on Quality of Service in Distributed

Object Systems, Sophia Antipolis and Cannes, France

Pu C, Schwan K, Walpole J (2001). Infosphere Project: System Support for

Information Flow Applications. ACM SIGMOD Record 30(1)

Schmidt DC, Kuhns F (2000). An overview of the real-time CORBA spec-

ification. IEEE Computer 33(6):56-63

174

14

Squeak (2000) Squeak. home page, http://www.squeak.org/ Squeak Founda-

tion

Staehli R, Walpole J, Maier D (1995). Quality of Service Specification for

Multimedia Presentations. Multimedia Systems 3(5/6)

Steere D, Baptista A, McNamee D, Pu C, Walpole J (2000) Research Chal-

lenges in Environmental Observation and Forecasting Systems. Mobi-

com 2000.

Steere DC, Goel A, Gruenberg J, McNamee D, Pu C, Walpole J (1999a) A

Feedback-driven Proportion Allocator for Real-Rate Scheduling. Oper-

ating System Design and Implementation (OSDI' 99)

Steere DC, Walpole J, Pu C (1999b) Automating Proportion/Period Sched-

uling. 20th IEEE Real-Time Systems Symposium, Phoenix, Arizona,

USA

Sun (2002) Java Remote Method Invocation Specification. Java™ 2 SDK

v1.4, Standard Edition. Web document, http://java.sun.com/j2se/1.4/

docs/guide/rmi/spec/rmiTOC.html Sun Microsystems Corp.

Thompson K, Miller GJ, Wilder R (1997). Wide-area internet traffic patterns

and characteristics. IEEE Network Magazine 11(6):10–23

van Renesse R, Birman K, Hayden M, Vaysburd A, Karr D (1997) Building

adaptive systems using Ensemble. Technical Report TR97-1638, Com-

puter Science Department, Cornell University

Vogt M, Plattner B, Plagemann T, Walter T (1993) A Run-time Environment

for Da CaPo. INET '93. Internet Society

Walpole J, Koster R, Cen S, Cowan C, Maier D, McNamee D, Pu C, Steere

D, Yu L (1997) A Player for Adaptive MPEG Video Streaming over the

Internet. 26th Applied Imagery Pattern Recognition Workshop AIPR-

97, Washington, DC. SPIE

175

1

A

NDREW

 P. B

LACK

holds a D.Phil in
Computation from the University of
Oxford. At the University of Washing-
ton (1981-1986) he was part of a team
that built two of the earliest distributed
object-oriented systems. From 1987
until 1994 he was with the Distributed
Systems Advanced Development group
and the Cambridge Research Laboratory
of Digital Equipment Corporation. Sub-
sequently, he joined the faculty of the
Oregon Graduate Institute as Professor
and Head of the Computer Science
Department. Since 2000 he has been
pursuing his research interests in pro-
gramming languages, programming
methodology, and system support for
distributed computing.

J

IE

 H

UANG

 received a B.S. degree in
Computer and Communications in 1992
and an M.S. degree in Computer
Science in 1995, both from Beijing Uni-
versity of Posts and Telecommunica-
tions. She then held the post of Assistant
Professor at the same school. Since Sep-
tember 1999 she has been a Ph.D.
student at the Oregon Graduate Institute,
now the Oregon Health & Science Uni-
versity. Her interests are in software
development methodology and pro-
gramming languages, especially a
domain-specific approach for building
multimedia networking applications.

R

AINER

 K

OSTER

 received a Master of
Science in Computer Science and Engi-
neering in 1997 from the Oregon Gradu-
ate Institute of Science and Technology
and a Diplom in Computer Science in
1998 from the University of Kaiserslau-
tern. He currently is a member of the
Distributed Systems Group at the Uni-
versity of Kaiserslautern. His interests
and research focus on quality-of-service
support and distributed multimedia sys-
tems.

J

ONATHAN

 W

ALPOLE

 received his Ph.D.
in Computer Science from Lancaster
University, UK, in 1987. He worked for
two years as a post-doctoral research
fellow at Lancaster University before
taking a faculty position at the Oregon
Graduate Institute (OGI). He is now a
Full Professor and Director of the
Systems Software Laboratory at the
OGI School of Science and Engineering
at Oregon Health & Science University.
His research interests are in operating
systems, distributed systems, multime-
dia computing, and environmental infor-
mation technology.

C

ALTON

 P

U

 received his Ph.D. in Com-
puter Science from University of Wash-
ington in 1986, and has served on the
faculty of Columbia University and the
Oregon Graduate Institute. He is cur-
rently a Professor at the College of
Computing, Georgia Institute of Tech-
nology where he occupies the John P.
Imlay, Jr. Chair in Software, and is a co-
director of the Center for Experimental
Research in Computer Systems. Dr. Pu
leads the Infosphere project, a collabo-
ration between Georgia Tech. and OGI
that is building systems support for
information-driven distributed applica-
tions; his other research interests
include operating systems, transaction
processing and Internet data manage-
ment.

176

APPENDIX J

Adaptive Live Video Streaming by Priority Drop. Jie Huang, Charles Krasic, Jonathan

Walpole, and Wuchi Feng, IEEE International Conference on Advanced Video and Signal Based

Surveillance (AVSS 2003), Miami, FL, July 2003.

177

http://www.cs.pdx.edu/~walpole/papers/avss2003.pdf

�

$GDSWLYH�/LYH�9LGHR�6WUHDPLQJ�E\�3ULRULW\�'URS
�

-LH�+XDQJ��&KDUOHV�.UDVLF��-RQDWKDQ�:DOSROH��DQG�:X�FKL�)HQJ�
2*,�6FKRRO�RI�6FLHQFH�DQG�(QJLQHHULQJ�
2UHJRQ�+HDOWK�DQG�6FLHQFH�8QLYHUVLW\�

^MLHKXDQJ��NUDVLF��ZDOSROH��ZXFKL`#FVH�RJL�HGX�
�

$EVWUDFW�
,Q� WKLV� SDSHU�ZH� H[SORUH� WKH� XVH� RI� 3ULRULW\�SURJUHVV�

VWUHDPLQJ��336��IRU�YLGHR�VXUYHLOODQFH�DSSOLFDWLRQV��336�
LV� DQ� DGDSWLYH� VWUHDPLQJ� WHFKQLTXH� IRU� WKH� GHOLYHU\� RI�
FRQWLQXRXV� PHGLD� RYHU� YDULDEOH� ELW�UDWH� FKDQQHOV�� ,W� LV�
EDVHG�RQ�WKH�VLPSOH�LGHD�RI�UHRUGHULQJ�PHGLD�FRPSRQHQWV�
ZLWKLQ� D� WLPH� ZLQGRZ� LQWR� SULRULW\� RUGHU� EHIRUH�
WUDQVPLVVLRQ��7KH�PDLQ�FRQFHUQ�ZKHQ�XVLQJ�336�IRU� OLYH�
YLGHR� VWUHDPLQJ� LV� WKH� WLPH� GHOD\� LQWURGXFHG� E\�
UHRUGHULQJ�� ,Q� WKLV� SDSHU� ZH� GHVFULEH� KRZ� 336� FDQ� EH�
H[WHQGHG� WR� VXSSRUW� OLYH� VWUHDPLQJ� DQG� VKRZ� WKDW� WKH�
GHOD\� LQKHUHQW� LQ� WKH�DSSURDFK�FDQ�EH� WXQHG� WR� VDWLVI\�D�
ZLGH� UDQJH� RI� ODWHQF\� FRQVWUDLQWV� ZKLOH� VXSSRUWLQJ� ILQH�
JUDLQ�DGDSWDWLRQ��
���,QWURGXFWLRQ��

6FDODEOH�YLGHR�VXUYHLOODQFH�V\VWHPV��ZKHUH�SRWHQWLDOO\�
WKRXVDQGV� RI� FDPHUDV� DUH� LQYROYHG�� ZLOO� UHTXLUH� WKH�
XQGHUO\LQJ� QHWZRUNLQJ� DQG� FRGLQJ� PHFKDQLVP� WR� EH�
VFDODEOH�� HIILFLHQW�� DQG� DGDSWLYH�� ,Q� SDUWLFXODU�� WKH� YLGHR�
FDPHUDV�LQ�WKHVH�V\VWHPV�LQ�DJJUHJDWH�FDQ�HDVLO\�RYHUORDG�
WKH�QHWZRUN�WKDW�FRQQHFWV�WKHP��$V�D�UHVXOW��ZH�H[SHFW�WKDW�
LQ�VXFK�V\VWHPV�VPDOO�FRPSXWLQJ�UHVRXUFHV�ZLOO�EH�SODFHG�
ZLWK�HDFK�FDPHUD� WKDW� DOORZV� LW� WR�GHDO�ZLWK� WKH� UHVRXUFH�
FRQVWUDLQWV�� � :H� EHOLHYH� WKDW� VXFK� UHVRXUFHV� VKRXOG� EH�
XVHG�WR�KHOS�PDNH�WKH�V\VWHP�DV�VFDODEOH�DV�SRVVLEOH�DQG�
WR�SURYLGH�WKH�KLJKHVW�TXDOLW\�YLGHR��

3ULRULW\�SURJUHVV� VWUHDPLQJ� �336�� LV� VXFK� DQ� DGDSWLYH�
VWUHDPLQJ�PHFKDQLVP�>�@�>�@��,W�XVHV�D�WLPH�ZLQGRZ�EDVHG�
DSSURDFK�LQ�ZKLFK�DOO�GDWD�SDFNHWV�ZLWK�WLPHVWDPSV�ZLWKLQ�
D� FHUWDLQ� SHULRG� RI� WLPH� DUH� SODFHG� LQ� D� ZLQGRZ� DQG�
UHRUGHUHG� LQWR� SULRULW\� RUGHU� EHIRUH� WUDQVPLVVLRQ�� ,W� WKHQ�
WUDQVPLWV� WKHVH� SDFNHWV� IRU� WKH� WLPH� GXUDWLRQ� RI� WKH�
ZLQGRZ� RQO\�� $W� WKH� HQG� RI� WKH� ZLQGRZ� GXUDWLRQ�� LW�
GLVFDUGV�XQVHQW�SDFNHWV�DQG�PRYHV�RQ�WR�WKH�QH[W�ZLQGRZ��
,Q� WKLV�ZD\�� WKH� DYDLODEOH� EDQGZLGWK� LV� XVHG� WR� VHQG� WKH�
PRVW� LPSRUWDQW� HOHPHQWV� RI� WKH� VWUHDP� DQG� WKH� OHDVW�
LPSRUWDQW� HOHPHQWV� DUH� GURSSHG�� 2XU� LPSOHPHQWDWLRQ� RI�
336� LQ� WKH� 4XDVDU� YLGHR� SLSHOLQH� >�@� VKRZV� WKDW� 336� LV�
JRRG�IRU�VWUHDPLQJ�VWRUHG�YLGHR���

7KH� UHRUGHULQJ� ZLQGRZ� LQ� 336� LQWURGXFHV� ODWHQF\��
KRZHYHU��DQG�WKLV�ODWHQF\�PLJKW�EH�SUREOHPDWLF�IRU�YLGHR�
VXUYHLOODQFH�DSSOLFDWLRQV��ZKLFK�VWUHDP�OLYH�YLGHR��,Q�OLYH�
YLGHR� VWUHDPLQJ�� WKH� ODWHQF\� FKDUDFWHULVWLFV� RI� WKH�
VWUHDPLQJ�PHFKDQLVPV�SDUWLDOO\�GHWHUPLQH�WKH�IUHVKQHVV�RI�
WKH� YLGHR� FRQWHQW�� 7KH� IUHVKQHVV� RI� WKH� YLGHR� FRQWHQW��
ZKLFK�LV�PHDVXUHG�E\�WKH�HQG�WR�HQG�ODWHQF\�IURP�D�IUDPH�
EHLQJ� FDSWXUHG� WR� LWV� GLVSOD\�� WHQGV� WR� EH� LPSRUWDQW� IRU�
YLGHR�VXUYHLOODQFH�DSSOLFDWLRQV���

,Q� WKLV�SDSHU��ZH�H[SORUH�KRZ�PXFK�RI�D�SUREOHP� WKH�
ODWHQF\� LQ�336� LV� IRU� OLYH�YLGHR�VWUHDPLQJ�DQG�GHWHUPLQH�
WKH�UDQJH�RI�YLGHR�VXUYHLOODQFH�DSSOLFDWLRQV�LW�FDQ�VXSSRUW��
:H� GHVFULEH� KRZ� 336� FDQ� EH� H[WHQGHG� WR� VXSSRUW� OLYH�
YLGHR�VWUHDPLQJ��DQG�HYDOXDWH� WKH� ODWHQF\� LPSOLFDWLRQV�RI�
WKH� DSSURDFK�� 2XU� LPSOHPHQWDWLRQ� RI� WKH� OLYH� 4XDVDU�
SLSHOLQH�VKRZV� WKDW�HYHQ�ZLWK� IDLUO\� UXGLPHQWDU\�VFDODEOH�
YLGHR�HQFRGLQJ� WHFKQRORJ\�� WKH� ODWHQF\�GXH� WR�DGDSWDWLRQ�
LQ� 336� FDQ� EH� UHGXFHG� WR� DV� OLWWOH� DV� ���PV� ZKLOH�
PDLQWDLQLQJ� ILQH�JUDLQ� DGDSWDWLRQ�� 7KLV� PHDQV� WKDW�
DSSOLFDWLRQV�ZLWK�D�ODWHQF\�WROHUDQFH�RI�D�KDOI�VHFRQG�FDQ�
EH� VXSSRUWHG� XVLQJ�7&3�IULHQGO\� SURWRFROV� RQ� D� FRDVW� WR�
FRDVW�OLQN�LQ�WKH�86��ZKHUH�SURSDJDWLRQ�GHOD\�LV�W\SLFDOO\�
OHVV�WKDQ����PV���

7KLV� SDSHU� LV� RUJDQL]HG� DV� IROORZV�� 5HODWHG� ZRUN� LV�
GLVFXVVHG�LQ�6HFWLRQ����6HFWLRQ���LQWURGXFHV�WKH�EDVLF�LGHD�
RI� 336� DQG� GHVFULEHV� KRZ� LW� ZRUNV� IRU� VWRUHG� YLGHR�
VWUHDPLQJ��6HFWLRQ���GLVFXVVHV�WKH�SUREOHPV�RI�XVLQJ�336�
IRU� OLYH� YLGHR� VWUHDPLQJ�� 6HFWLRQ� �� RXWOLQHV� D� VHULHV� RI�
H[SHULPHQWV� IRU� HYDOXDWLQJ� WKH� ODWHQF\� DQG� DGDSWDWLRQ�
JUDQXODULW\� FKDUDFWHULVWLFV� RI� 336� DQG� SUHVHQWV� UHVXOWV��
)LQDOO\�� 6HFWLRQ� �� FRQFOXGHV� WKH� SDSHU� DQG� GLVFXVVHV�
IXWXUH�ZRUN��

���5HODWHG�ZRUN�
6WUHDPLQJ� YLGHR� DGDSWLYHO\� LQYROYHV� PDQ\� UHVHDUFK�

DUHDV��:X�HW� DO�� KDYH�ZULWWHQ� D� FRPSUHKHQVLYH� VXUYH\� RI�
YLGHR�VWUHDPLQJ�DSSURDFKHV� DQG�GLUHFWLRQV� LQ� WKHLU� SDSHU�
>��@��9DQGDORUH�HW�DO��JLYH�D�GHWDLOHG�VXUYH\�RI�DSSOLFDWLRQ�
OHYHO�DGDSWDWLRQ�WHFKQLTXHV�>��@���

$� FRPPRQ� DSSURDFK� WR� DGDSWLYH� OLYH� VWUHDPLQJ� LV� WR�
PRQLWRU� QHWZRUN� FRQGLWLRQV� XVLQJ� IHHGEDFN�EDVHG�

178

�

PHFKDQLVPV�VXFK�DV�57&3�UHFHLYHU�UHSRUWV�>�@�DQG�DGMXVW�
YLGHR� HQFRGLQJ� SDUDPHWHUV� RQ� WKH� IO\� >�@>�@� VR� WKDW� WKH�
UDWH� RI� WKH� HQFRGHG� YLGHR� VWUHDP�PDWFKHV� D� G\QDPLFDOO\�
GHWHUPLQHG� WDUJHW� EDQGZLGWK�� $� NH\� DGYDQWDJH� RI� WKLV�
DSSURDFK�LV�FRPSUHVVLRQ�HIILFLHQF\²WKH�YLGHR�HQFRGHU�LV�
DEOH� WR� RSWLPL]H� YLGHR� TXDOLW\� IRU� WKH� JLYHQ� WDUJHW�
EDQGZLGWK��$QRWKHU�DGYDQWDJH�LV�LWV�VXSSRUW�IRU�ILQH�JUDLQ�
DGDSWDWLRQ²WKH� WDUJHW� EDQGZLGWK� FDQ� EH� FKRVHQ� IURP� D�
FRQWLQXRXV� UDQJH�� $� WKLUG� DGYDQWDJH� LV� ORZ� ODWHQF\²
DGDSWDWLRQ�FDQ�EH�SHUIRUPHG�ZLWKRXW�UHRUGHULQJ�GDWD��7KH�
PDLQ� GLVDGYDQWDJHV� RI� WKH� DSSURDFK� DUH� LWV� LQDELOLW\� WR�
VDWLVI\� FRQIOLFWLQJ� UHTXLUHPHQWV� RI� KHWHURJHQHRXV�
UHFHLYHUV�LQ�D�VLPXOFDVW�RU�PXOWLFDVW�GLVWULEXWLRQ�QHWZRUN��
WKH� GLIILFXOW\� RI� WXQLQJ� HQFRGLQJ� SDUDPHWHUV� WR� DFKLHYH�
RSWLPDO� YLGHR� TXDOLW\� IRU� D� FHUWDLQ� YLGHR� UDWH�� DQG� WKH�
GLIILFXOW\�RI� WXQLQJ� WKH� IHHGEDFN�FRQWURO� WR�GHWHUPLQH� WKH�
VXLWDEOH�DQG�DFFXUDWH�WDUJHW�YLGHR�UDWH��,I�WKH�WDUJHW�YLGHR�
UDWH� LV� FKRVHQ� LQFRUUHFWO\� LW� ZLOO� HLWKHU� UHVXOW� LQ� QHWZRUN�
XQGHUXWLOL]DWLRQ��FRQJHVWLRQ��RU�LQFUHDVHG�GHOD\��

336� WDNHV� DQ� DOWHUQDWLYH� DSSURDFK� EDVHG� RQ� VFDODEOH�
YLGHR� HQFRGLQJ� DQG� SULRULW\� GURSSLQJ�� :LWKRXW�
G\QDPLFDOO\�PDQLSXODWLQJ�HQFRGLQJ�SDUDPHWHUV��D�VFDODEOH�
HQFRGLQJ�DSSURDFK�DOORZV�D�ZLGH�UDQJH�RI��YLGHR�UDWHV�DW�
WKH� H[SHQVH� RI� VRPH� FRPSUHVVLRQ� HIILFLHQF\��$GDSWDWLRQ�
LV� VXSSRUWHG� LQ� 336� E\� SULRULWL]LQJ� GDWD� LQ� WKH� VFDODEOH�
YLGHR� VWUHDP� DQG� G\QDPLFDOO\� GURSSLQJ� GDWD� LQ� SULRULW\�
RUGHU� LQ� RUGHU� WR� PDWFK� WKH� WDUJHW� EDQGZLGWK�� 336¶V�
VHQGLQJ�VWUDWHJ\�GRHV�QRW�UHO\�RQ�FRPSOH[�FRQWURO�PRGHOV�
DQG�LV�LQGHSHQGHQW�RI�UHFHLYHU�IHHGEDFN��,QVWHDG��LW�DOORZV�
DQ�XQGHUO\LQJ�FRQJHVWLRQ�FRQWURO�SURWRFRO��VXFK�DV�7&3�RU�
DQ\� RI� WKH� 7&3�IULHQGO\� VWUHDPLQJ� SURWRFROV� >�@� WR�
GHWHUPLQH�WKH�DSSURSULDWH�VHQGLQJ�UDWH��:KDWHYHU�WKDW�UDWH�
LV�� 336� VHQGV� YLGHR� SDFNHWV� LQ� SULRULW\� RUGHU� IURP� D�
ZLQGRZ�DV�IDVW�DV�SRVVLEOH��,Q�WKLV�ZD\��D�KLJK�EDQGZLGWK�
UHFHLYHU�JHWV�PRUH�GDWD�WKDQ�D�ORZ�EDQGZLGWK�UHFHLYHU�IRU�
HDFK� ZLQGRZ�� 7KH\� ERWK� JHW� WKH� EHVW� SRVVLEOH� YLGHR�
TXDOLW\� XQGHU� WKHLU� EDQGZLGWK� OLPLWDWLRQV� EHFDXVH� IRU�
HLWKHU�UHFHLYHU�� WKH�GDWD�SDFNHWV� UHFHLYHG�DUH�PRUH�XVHIXO�
WKDQ� WKRVH� GLVFDUGHG�� DQG� WKH� PD[LPXP� SRVVLEOH�
EDQGZLGWK� LV� XVHG� ZKLOH� SUHVHUYLQJ� 7&3�IULHQGO\�
EHKDYLRU�� $� NH\� DGYDQWDJH� RI� WKLV� DSSURDFK� LV� WKH�
VLPSOLFLW\� RI� WKH� PHFKDQLVPV� DQG� WKH� DELOLW\� WR� VXSSRUW�
KHWHURJHQHRXV�VLPXOFDVW�GLVWULEXWLRQ�HIILFLHQWO\��

���3ULRULW\�SURJUHVV�VWUHDPLQJ��
�����%DVLF�VWUHDPLQJ�

336� XVHV� WLPHVWDPSV� DQG� SULRULW\� ODEHOV� WR� SHUIRUP�
DGDSWLYH� VWUHDPLQJ�� $� ZLQGRZ� LQ� 336� FRQWDLQV� DOO� GDWD�
SDFNHWV�ZLWK� WLPHVWDPSV�ZLWKLQ� D� FHUWDLQ� SHULRG� RI� WLPH��
7KH� ZLQGRZ� LV� FDOOHG� DQ� DGDSWDWLRQ� ZLQGRZ�� DQG� WKH�
DGDSWDWLRQ� ZLQGRZ� VL]H� LV� WKH� WLPH� GXUDWLRQ�� QRW� WKH�
QXPEHU�RI�SDFNHWV�RU�QXPEHU�RI�E\WHV�LQ�WKLV�ZLQGRZ��

)LJXUH� �� VKRZV� DQ� LGHDO� H[DPSOH� RI� 336� VWUHDPLQJ�
ZLWK� VXIILFLHQW� EDQGZLGWK� DQG� D� FRQVWDQW� GHOD\�� 'DWD�
SDFNHWV� ZLWK� WLPHVWDPSV� DQG� SULRULW\� ODEHOV� DUH� JURXSHG�
LQWR�ZLQGRZV�LQ�WLPH�RUGHU��6XSSRVH�WKH�WLPHVWDPSV�DUH�LQ�
PLOOLVHFRQGV��DQG�WKH�ZLQGRZ�VL]H�LV����PV��:LWKLQ�HDFK�
����PV� ZLQGRZ�� SDFNHWV� DUH� VRUWHG� DQG� VHQW� LQ� SULRULW\�
RUGHU�� DVVXPLQJ� WKDW� D� VPDOO� QXPEHU� UHSUHVHQWV� D� KLJK�
SULRULW\�� 3DFNHWV� LQ� D� ZLQGRZ� DUH� VHQW� RXW� DV� IDVW� DV�
SRVVLEOH�� +HQFH�� ZKHQ� 336� UXQV� RYHU� 7&3�� LW� FDQ� GHDO�
ZLWK�7&3¶V�EXUVWLQHVV�� ,Q� WKLV� H[DPSOH�� WKH�EDQGZLGWK� LV�
KLJKHU�WKDQ�WKH�GDWD�UDWH��VR�WKHUH�LV�VSDUH�WLPH�LQ�WKH�����
PV�ZLQGRZ��7KH�VSDUH�WLPH�FDQ�EH�XVHG�IRU�ZRUN�DKHDG�RU�
EDQGZLGWK�VNLPPLQJ�>�@���

�
Figure 1. PPS streaming

�����$GDSWDWLRQ�
$V�VKRZQ�LQ�)LJXUH����336�FDQ�DGDSW� WR� WKH�DYDLODEOH�

EDQGZLGWK�� ,I� WKH� EDQGZLGWK� LV� ORZHU� WKDQ� WKH� GDWD� UDWH��
VRPH� GDWD� SDFNHWV� DUH� XQVHQW� ZKHQ� WKH� ZLQGRZ� WLPH�
H[SLUHV��7KHVH�GDWD�SDFNHWV��ZKLFK�KDYH�ORZ�SULRULWLHV��DUH�
GURSSHG�� 336� PDNHV� HIILFLHQW� XVH� RI� WKH� OLPLWHG�
EDQGZLGWK� E\� WUDQVIHUULQJ� WKH� GDWD� SDFNHWV� ZLWK� KLJKHVW�
SULRULW\�ILUVW��

)LJXUH����D��VKRZV�KRZ�336�GHDOV�ZLWK�LQFUHDVHG�GHOD\�
E\� DVNLQJ� WKH� VHQGHU� WR� VHQG� GDWD� HDUOLHU� VR� WKDW� LW� KDV�
PRUH� WLPH� WR� UHDFK� WKH� UHFHLYHU�� ,I� WKH� GHOD\� GHFUHDVHV��
336�FRXOG�HLWKHU�FKDQJH�EDFN�WR�WKH�ROG�VHQGLQJ�VFKHGXOH�
WR� NHHS� WKH� UHFHLYHU� EXIIHU� ILOO�OHYHO� ORZ�� RU� NHHS� WKH�
FXUUHQW�VFKHGXOH�VR�DV�WR�SULPH�WKH�UHFHLYHU�VLGH�EXIIHU�LQ�
DQWLFLSDWLRQ�RI�IXWXUH�GHOD\�DQG�EDQGZLGWK�YDULDWLRQV��

,Q� SUDFWLFH�� WKH� WZR� DGDSWDWLRQ�PHFKDQLVPV� FRRSHUDWH�
WR�PDWFK�WKH�YDU\LQJ�QHWZRUN�FRQGLWLRQV��

�

Packets
grouped into
windows

Sender ReceiverPackets in
priority order

33, 1 �������
���	����

���	���

���	��� �

�	��� �

�	��� �

��	���

���	��� �

33, 1 ���	���

����� �
���	��� �

�	��� �
���	���

�	��� �

��	���

���	��� �

33, 1 �	�����
������

������

������� �

����� �

����� �

	�����

�	���� �

Time-
stamp

Priority
Label

Sending deadlines Receiving deadlines

Packets with
timestamps
and priority

179

�

�
Figure 2. Adaptation to bandwidth

�
Figure 3. Adaptation to delay

�����3UHSDUDWLRQ�IRU�YLGHR�VWUHDPLQJ�
336� FDQ� EH� XVHG� WR� VWUHDP� DQ\� GDWD� IORZ� WKDW� FDQ� EH�

SDFNHWL]HG�VXFK�WKDW�HDFK�SDFNHW�FDQ�EH�WLPH�VWDPSHG�DQG�
SULRULWL]HG�� ,Q� WKLV� VHFWLRQ�� ZH� GLVFXVV� SDFNHWL]DWLRQ��
WLPHVWDPSLQJ��DQG�SULRULWL]DWLRQ�IRU�YLGHR�VWUHDPV��

$� YLGHR� VWUHDP� FRQVLVWV� RI� YLGHR� IUDPHV�� WKH� YLGHR�
IUDPHV�FRXOG�EH�WKH�GDWD�SDFNHWV�IRU�336��+RZHYHU��KRZ�
WKH� YLGHR� IUDPHV� DUH� HQFRGHG� GHWHUPLQHV� WKH� VSDFH� IRU�
DGDSWDWLRQ�� 6FDODEOH� HQFRGLQJ� LV� SUHIHUUHG� EHFDXVH� WKH�
YLGHR�VWUHDP�FDQ�ZRUN�DW�GLIIHUHQW�GDWD� UDWHV�DQG�ZH�FDQ�
DFKLHYH� GLIIHUHQW� TXDOLW\� OHYHOV� XQGHU� GLIIHUHQW� QHWZRUN�
FRQGLWLRQV�� 7KH� 4XDVDU� SLSHOLQH� XVHV� D� VFDODEOH�
FRPSUHVVLRQ� IRUPDW� FDOOHG� 63(*� �6FDODEOH� 03(*���
H[WHQGLQJ�03(*���YLGHR�ZLWK�615�VFDODELOLW\� >�@��(DFK�
03(*�YLGHR� IUDPH� LV� GLYLGHG� LQWR� IRXU� OD\HUV�� LQ�ZKLFK�
WKH� EDVH� OD\HU� FRQWDLQV� WKH� PRVW� VLJQLILFDQW� ELWV� RI� WKH�

'&7� FRHIILFLHQWV� DQG� WKH� VXFFHVVLYH� OD\HUV� FRQWDLQ� WKH�
OHVV� VLJQLILFDQW� ELWV�� (DFK� OD\HU� RI� DQ� 03(*� IUDPH� LV�
HQFDSVXODWHG�LQ�DQ�63(*�SDFNHW��

9LGHR�IUDPHV�KDYH�LQKHUHQW�WLPHVWDPSV��WKH�SOD\�WLPH��
63(*� SDFNHWV� DUH� JLYHQ� WKH� WLPHVWDPSV� RI� WKH�
FRUUHVSRQGLQJ�03(*�IUDPHV��

3ULRULWL]DWLRQ� HQDEOHV� 336� WR� GR� ZLVH� DGDSWDWLRQ�
ZLWKRXW� XQGHUVWDQGLQJ� WKH� FRPSOH[� VHPDQWLFV� RI� YLGHR�
HQFRGLQJ�� ,Q� WKH� 4XDVDU� SLSHOLQH�� SULRULWL]DWLRQ� H[SRVHV�
WHPSRUDO� VFDODELOLW\� DQG� 615� VFDODELOLW\� E\� UHIOHFWLQJ�
GHSHQGHQFLHV� DPRQJ� 63(*� SDFNHWV��)RU� H[DPSOH�� WKH�
EDVH�OD\HU�RI�DQ�,�IUDPH�KDV�KLJKHU�SULRULW\�WKDQ�WKH�EDVH�
OD\HUV�RI�DQ\�3�IUDPHV�WKDW�GHSHQG�RQ�LW��DQG�D�EDVH�OD\HU�
KDV� KLJKHU� SULRULW\� WKDQ� WKH� HQKDQFHPHQW� OD\HUV� LQ� WKH�
VDPH�03(*�IUDPH��+RZHYHU��GHSHQGHQFLHV�GHFLGH�RQO\�D�
SDUWLDO�RUGHU�DPRQJ�63(*�SDFNHWV��)RU�WKH�LPSRUWDQFH�RI�
WKH�EDVH�OD\HU�RI�D�3�IUDPH�RYHU�DQ�HQKDQFHPHQW�OD\HU�RI�
DQ� ,� IUDPH��4XDVDU¶V� SULRULWL]DWLRQ�PHFKDQLVP� WDNHV� LQWR�
DFFRXQW�KRZ�PXFK�D�XVHU�SUHIHUV� IUDPH� UDWH�RYHU�SLFWXUH�
615�� 7KLV�PHFKDQLVP� GRHV� QRW� VLPSO\� DVVLJQ� D� SULRULW\�
DFFRUGLQJ� WR� WKH� IUDPH� W\SH� DQG� OD\HU�� LQVWHDG�� LW� XVHV� D�
ZLQGRZ�EDVHG� VFKHPH� UHVXOWLQJ� LQ� PDQ\� PRUH� SULRULW\�
OHYHOV� IRU� D� YLGHR� VWUHDP� WKDQ� D� RQH�IUDPH�EDVHG�
DOJRULWKP�DQG�KHQFH�VXSSRUWV�PXFK�ILQHU�JUDLQ�DGDSWDWLRQ��
7KH� ODUJHU� WKH� ZLQGRZ�� WKH� PRUH� SULRULW\� OHYHOV� FDQ� EH�
XWLOL]HG�� :H� FRPELQH� VRPH� TXDOLW\� OHYHOV� WKDW� DUH�
LQGLVWLQJXLVKDEOH�E\�KXPDQ�H\HV�DQG�ZH�GHILQH�DW�PRVW����
SULRULW\� OHYHOV� DW� DQ\� JLYHQ� WLPH� LQ� WKH� 4XDVDU� SLSHOLQH��
'HWDLOV�RI�WKH�DOJRULWKP�FDQ�EH�IRXQG�LQ�RXU�HDUOLHU�SDSHUV�
>�@��

63(*� LV� MXVW� DQ� H[DPSOH� VFDODEOH� YLGHR� IRUPDW��
6XEVHTXHQWO\� QHZ� VFDODEOH� YLGHR� HQFRGLQJ� DSSURDFKHV��
VXFK�DV�03(*���)*6��KDYH�EHWWHU�FRPSUHVVLRQ�HIILFLHQF\�
DQG�ILQHU�JUDLQ� VFDODELOLW\� WKDQ�63(*�DQG�KHQFH�RIIHU�DQ�
HYHQ�PRUH�IDYRUDEOH�SODWIRUP�IRU�336���

���/LYH�VWUHDPLQJ�
�����$GDSWDWLRQ�IRU�OLYH�YLGHR�

8VLQJ� 336� IRU� OLYH� YLGHR� LQWURGXFHV�PXFK�PRUH� WKDQ�
VLPSO\�UHSODFLQJ�WKH�VWRUHG�YLGHR�ILOH�ZLWK�D�YLGHR�FDPHUD��
$� ELJ� GLIIHUHQFH� EHWZHHQ� VWRUHG� YLGHR� DQG� OLYH� YLGHR� LV�
WKDW� OLYH� YLGHR� KDV� LWV� RZQ� FDSWXUH� FORFN�� +HQFH�� OLYH�
YLGHR�FDQQRW�EH�JHQHUDWHG�IDVWHU�RU�VORZHU�WKDQ�LWV�FDSWXUH�
UDWH��ZKLOH�VWRUHG�YLGHR�FDQ�EH�UHDG�ZKHQHYHU�LW�LV�QHHGHG��
7KLV� GLIIHUHQFH� LPSOLHV� WKDW� WKH� ZRUN�DKHDG� PHFKDQLVP�
GHVFULEHG� LQ�6HFWLRQ����� IRU�GHDOLQJ�ZLWK� LQFUHDVHG�GHOD\�
FDQQRW� EH� XVHG� IRU� OLYH� YLGHR��)RU� OLYH� YLGHR�� VLQFH� LW� LV�
QRW�SRVVLEOH�WR�³UHDG�DKHDG´�� LW�FDQQRW�EH�VHQW�DKHDG��ZH�
LQVWHDG�LQWURGXFH�GHOD\�DW�WKH�UHFHLYHU�E\�SXVKLQJ�EDFN�WKH�
UHFHLYLQJ�GHDGOLQHV��DV�VKRZQ�LQ�)LJXUH����E����

Sender

�

Increase
d delay

Black areas
are data
arriving late �

Sending deadlines New sending deadlines

�

�

This window
is sent earlier
so no data is
late

Receiving deadlines

Receiver

Increased
delay

New receiving
deadlines

Sender

�

�

�

�

Receiving
deadlines
are put off

(a). stored video (b). live video

Sender

�

�

�

�

Sending deadlines Receiving deadlines

More than enough
bandwidth for the
first window

Just enough
bandwidth for the
second window

Not enough bandwidth
for the third window. The
black area is the
dropped low priority data

Receiver

Receiver

180

�

1RWH� WKDW� WKLV� PHFKDQLVP� LV� VXLWDEOH� IRU� PXOWLFDVW�
EHFDXVH�HDFK�UHFHLYHU�FDQ�DGMXVW�LWV�UHFHLYLQJ�GHDGOLQHV�WR�
FRPSHQVDWH�IRU�LWV�RZQ�QHWZRUN�GHOD\��
�����/DWHQF\�IRU�VWUHDPLQJ�

7KH�FDSWXUH�FORFN� LQWURGXFHV� WKH�QRWLRQ�RI�HQG�WR�HQG�
ODWHQF\��ZKLFK�LV�WKH�WLPH�IURP�D�IUDPH�EHLQJ�FDSWXUHG�WR�
LWV�EHLQJ�GLVSOD\HG��5HGXFLQJ�WKLV�HQG�WR�HQG�ODWHQF\�LV�D�
JRDO� VSHFLILF� WR� OLYH� YLGHR� VWUHDPLQJ��)RU� VWRUHG� YLGHR�
VWUHDPLQJ�� DSSOLFDWLRQV� GR� UHTXLUH� WKDW� IUDPHV� DUULYH� RQ�
WLPH�IRU�GLVSOD\��EXW�LW�GRHV�QRW�PDWWHU�ZKHQ�WKH�IUDPH�LV�
UHDG�IURP�D�ILOH�RU�KRZ�ORQJ�LW�VWD\V�LQ�EXIIHUV�DV�ORQJ�DV�LW�
LV�RQ�WLPH�IRU�GLVSOD\��

7KHUH� DUH� WZR� PDLQ� VRXUFHV� RI� ODWHQF\�� WKH� HQG�
PDFKLQHV�DQG�WKH�QHWZRUN��/DWHQF\�IURP�WKH�HQG�PDFKLQHV�
LQFOXGHV� WKH�SURFHVVLQJ� WLPH� DQG� WKH�EXIIHULQJ� WLPH�� �2Q�
ERWK�WKH�VHQGHU�DQG�WKH�UHFHLYHU��WKH�SURFHVVLQJ�WLPH�GRHV�
QRW� YDU\� PXFK�� �)RU� H[DPSOH�� WKH� WLPH� IRU� HQFRGLQJ��
GHFRGLQJ�� UHRUGHULQJ�� DQG� SULRULWL]LQJ� LV� IL[HG� XQOHVV�ZH�
LPSURYH� WKH� DOJRULWKPV� RU� VZLWFK� WR� IDVWHU� FRPSXWHUV��
7KHUHIRUH�ZH� FDQ� DVVXPH� WKDW� LQ� JHQHUDO� WKHVH� WLPHV� DUH�
IL[HG���

7ZR� W\SHV� RI� EXIIHUV� FRQWULEXWH� WR� WKH� WRWDO� EXIIHULQJ�
WLPH�� 6RPH� EXIIHUV� HQDEOH� DV\QFKURQ\� DPRQJ� SLSHOLQH�
FRPSRQHQWV��)RU� H[DPSOH�� WKH� FDSWXUH� EXIIHU� NHHSV� UDZ�
YLGHR� IUDPHV� IURP� EHLQJ� GURSSHG� ZKLOH� WKH� &38� LV�
RFFXSLHG�E\�HQFRGLQJ�RU�SULRULWL]LQJ��VLPLODUO\�WKH�GLVSOD\�
EXIIHU� DOORZV� D� VPRRWK� SOD\EDFN�ZKHQ� D� FRPSOH[� IUDPH�
WDNHV� ORQJHU� WKDQ� LWV� GLVSOD\� GXUDWLRQ� WR� GHFRGH�� 7KHVH�
EXIIHUV�QHHG�RQO\�EH�ODUJH�HQRXJK�WR�SUHYHQW�WKH�SLSHOLQH�
IURP�VWDOOLQJ��7KH�RWKHU�W\SH�RI�EXIIHU�SHUPLWV�DGDSWDWLRQ��
7KH� WLPH� VSHQW� LQ� WKHVH� EXIIHUV� LV� GHWHUPLQHG� E\� WKH�
DGDSWDWLRQ� ZLQGRZ� VL]H�� ZKLFK� LV� DQ� DGMXVWDEOH� 336�
SDUDPHWHU���

7KH� ODWHQF\�RI� WKH�QHWZRUN� VHJPHQW� LV� VRPHWKLQJ� WKDW�
ZH�DGDSW�WR�DQG�FDQQRW�FRQWURO��

,JQRULQJ� WKH� ODWHQF\� VRXUFHV� WKDW� DUH� LQGHSHQGHQW� RI�
336�� WKH� HQG�WR�HQG� ODWHQF\� GXH� WR� DGDSWDWLRQ� EXIIHUV� LV�
WKH� VXP� RI� WKH� DGDSWDWLRQ� ZLQGRZ� VL]H� DQG� WKH�
WUDQVPLVVLRQ� WLPH�� DV� VKRZQ� LQ�)LJXUH� ���)RU� 336�
DGDSWDWLRQ��WKH�ODVW�SDFNHW�LQ�WKH�ZLQGRZ�LV�GHOD\HG�RQ�WKH�
VHQGHU�VLGH�IRU�WKH�ZKROH�ZLQGRZ�WLPH�EXW�QRW�GHOD\HG�DW�
DOO� RQ� WKH� UHFHLYHU� VLGH�� 6LPLODUO\�� WKH� ILUVW� SDFNHW� LQ� WKH�
ZLQGRZ� LV� GHOD\HG�RQ� WKH� UHFHLYHU� VLGH� EXW� QRW� DW� DOO� RQ�
WKH�VHQGHU�VLGH��$OO�RI�WKH�IUDPHV�LQ�EHWZHHQ�DUH�GHOD\HG�
ERWK�RQ�WKH�VHQGHU�DQG�WKH�UHFHLYHU��EXW�WKH�WRWDO�GHOD\�LV�
DOZD\V�RQH�ZLQGRZ�WLPH��7KH�WUDQVPLVVLRQ�WLPH�LV�UHODWHG�
WR� WKH�ZLQGRZ� VL]H� LQ� WZR�ZD\V��:KHQ� WKH� EDQGZLGWK� LV�
KLJKHU� WKDQ� WKH� GDWD� UDWH�� WKH� WUDQVPLVVLRQ� WLPH� LV�
SURSRUWLRQDO�WR�WKH�DPRXQW�RI�GDWD�LQ�D�ZLQGRZ��ZKLFK�LV�
SURSRUWLRQDO� WR� WKH�ZLQGRZ� VL]H��:KHQ� WKH� EDQGZLGWK� LV�
ORZHU� WKDQ� WKH� GDWD� UDWH�� WKH� ZLQGRZ� VL]H� LV� WKH�
WUDQVPLVVLRQ� WLPH� IRU� WKLV�ZLQGRZ�� DFFRUGLQJ� WR� WKH� 336�

VWUHDPLQJ�DOJRULWKP��VLQFH� WUDQVPLVVLRQ�FRQWLQXHV� IRU� WKH�
HQWLUH�GXUDWLRQ�RI�WKH�ZLQGRZ�EHIRUH�GDWD�LV�GURSSHG���

�
Figure 4. End-to-end latency

,Q� VXPPDU\�� IRU� WKH� QRUPDO� FDVH� ZKHQ� EDQGZLGWK� LV�
OLPLWHG��WKH�ODWHQF\�LQKHUHQW�LQ�336�LV�JHQHUDOO\�WZLFH�WKH�
ZLQGRZ�VL]H��7KXV�� WXQLQJ� WKH�DGDSWDWLRQ�ZLQGRZ� VL]H� LV�
WKH�NH\� WR� WXQLQJ� WKH�HQG�WR�HQG� ODWHQF\��)RU� ORZ�ODWHQF\�
VWUHDPLQJ��D�VPDOO�ZLQGRZ�VL]H�LV�SUHIHUDEOH��+RZHYHU��D�
VPDOO� ZLQGRZ� VL]H� PDNHV� ILQH�JUDLQ� DGDSWDWLRQ� GLIILFXOW�
DQG� HYHQWXDOO\� LPSDFWV� YLGHR� TXDOLW\�� 7KLV� LV� EHFDXVH�
DGDSWDWLRQ� KDSSHQV� ZLWKLQ� D� ZLQGRZ�� L�H�� D� VPDOOHU�
ZLQGRZ� SURYLGHV� IHZHU� GURSSDEOH� GDWD� XQLWV� DQG� IHZHU�
SULRULW\�OHYHOV�IRU�DGDSWDWLRQ��

���([SHULPHQWV�
:H� KDYH� LPSOHPHQWHG� WKH� OLYH� 4XDVDU� SLSHOLQH� E\�

H[WHQGLQJ� 336� IRU� OLYH� VWUHDPLQJ� DQG� VXEVWLWXWLQJ� WKH�
03(*�VRXUFH� DQG� WKH�63(*� WUDQVFRGLQJ� FRPSRQHQWV� RI�
WKH�SLSHOLQH�ZLWK�D�FDPHUD��D�FDSWXUH�FDUG��DQG�D�VRIWZDUH�
63(*�HQFRGHU��7KH�FDSWXUH�FDUG�ZH�XVH�LV�D�:LQ79�FDUG�
IURP�+DXSSDXJH��7KH�63(*�HQFRGHU� LV�EDVHG�RQ�IIPSHJ�
>�@��DQ�RSHQ�VRXUFH�HQFRGHU�WKDW�FDQ�HQFRGH�LQ�UHDO� WLPH���
:H�PRGLILHG�IIPSHJ�WR�LPSOHPHQW�63(*¶V�615�OD\HULQJ�
VWUDWHJ\�DQG� WR�SURGXFH�63(*�RXWSXW� GLUHFWO\� WR� WKH� OLYH�
4XDVDU�SLSHOLQH��

7KH�OLYH�4XDVDU�SLSHOLQH�UXQV�RQ�/LQX[�0DQGUDNH������
7KH�VHQGHU�DQG�WKH�UHFHLYHU�DUH�WZR�3HQWLXP�,,,����0+]�
PDFKLQHV��7KH�WUDQVSRUW�SURWRFRO�ZH�XVH�LV�7&3��:H�UXQ�
WKH� SLSHOLQH� RQ� D� SULYDWH� /$1� ZLWKRXW� DQ\� FRPSHWLQJ�
WUDIILF��:H� DOVR�PDLQWDLQ�PLQLPXP�EXIIHU� ILOO� OHYHOV� WKDW�
DOORZ� WKH� SLSHOLQH� WR� UXQ� VPRRWKO\�� 7KXV� WKH� DGDSWDWLRQ�
ZLQGRZ� VL]H� LV� WKH� PDLQ� FRQWURO� YDULDEOH� LQ� WKH�
H[SHULPHQWV���

0HDVXUHPHQWV� DUH� REWDLQHG� WKURXJK� WKH� JVFRSH�
VRIWZDUH� RVFLOORVFRSH� >�@�� ZKLFK� LV� D� WLPH�VHQVLWLYH�
YLVXDOL]DWLRQ� WRRO� WKDW�VKRZV� WKH�EDQGZLGWK�XVDJH��EXIIHU�
ILOO� OHYHO�� HQG�WR�HQG� ODWHQF\�� DQG� RWKHU� VLJQDOV� LQ� UHDO�
WLPH����

,Q� WKH� IROORZLQJ� VXEVHFWLRQV�� ZH� FRQFHQWUDWH� RQ� WKH�
UHODWLRQVKLSV� EHWZHHQ� HQG�WR�HQG� ODWHQF\�� WKH� DGDSWDWLRQ�
ZLQGRZ� VL]H�� DQG� WKH� DGDSWDWLRQ� JUDQXODULW\��:H� XVH� WKH�
DGDSWDWLRQ�JUDQXODULW\�DV�DQ�LQGLFDWLRQ�RI�WKH�HIIHFWLYHQHVV�

Window size +
transmission time

Sender Receiver Camera Display

181

�

RI� WKH� DGDSWDWLRQ�� 7KH� DGDSWDWLRQ� JUDQXODULW\� GHWHUPLQHV�
KRZ�FORVHO\�D�SLSHOLQH�FDQ�XWLOL]H�D�JLYHQ�OHYHO�RI�UHVRXUFH�
FDSDFLW\��ZKLFK�LV�EDQGZLGWK�LQ�RXU�H[SHULPHQWV��
�����/DWHQF\�YV��ZLQGRZ�VL]H�

)LJXUH� �� VKRZV� WKH� UHODWLRQVKLS� EHWZHHQ� WKH� ODWHQF\�
DQG�WKH�DGDSWDWLRQ�ZLQGRZ�VL]H��$V�H[SHFWHG�� WKH�ODWHQF\�
JURZV� ZLWK� WKH� ZLQGRZ� VL]H��)URP�)LJXUH� ��ZH� FDQ� VHH�
WKDW�ZKHQ�WKH�DGDSWDWLRQ�ZLQGRZ�VL]H�LV�OHVV�WKDQ����PV��
WKH�ODWHQF\�IURP�DGDSWDWLRQ��SOXV�SURFHVVLQJ�DQG�QHFHVVDU\�
EXIIHULQJ��LV�ZHOO�EHORZ����PV��,Q�WKH�UHDO�ZRUOG��WKH�HQG�
WR�HQG� ODWHQF\� DOVR� LQFOXGHV� WKH� QHWZRUN� SURSDJDWLRQ�
GHOD\�DQG�WUDQVPLVVLRQ�WLPH��

�

�����

�����

�����

�����

�������

�������

���� �
!
" " �
#
$ � �%�
&
$ %�
"
$ " ' �
�
& � �%�
!
& ��
#
& " ' �
&
 � ���
"
 !(�
�
 " ' �
!
! � �%�
#
! !��
&
! " ' �
"
) � $ �
�
) !��
!

*,+ -/.�0�132/+ 46587 982�:

; <= >?
@ A
B C
DE

�
Figure 5. Latency vs. adaptation window size

7KH� ODWHQFLHV� VKRZQ� LQ�)LJXUH� �� DUH�PHDVXUHG� IRU� DQ�
LQWUD�HQFRGHG� YLGHR� VWUHDP�� � 7KH� ODWHQFLHV� IRU� LQWHU�
HQFRGHG�VWUHDPV�DUH�YHU\�FORVH�WR�WKRVH�VKRZQ�LQ�)LJXUH���
DQG� WKH� *23� VL]H� KDV� OLWWOH� LPSDFW� RQ� WKH� HQG�WR�HQG�
ODWHQF\��7KH�ZLQGRZ�VL]H�LV�WKH�GHWHUPLQDQW�IDFWRU��

�
�����$GDSWDWLRQ�JUDQXODULW\�YV��ZLQGRZ�VL]H��

�
(DFK� ZLQGRZ� VL]H� FDQ� GHOLYHU� D� FHUWDLQ� QXPEHU� RI�

SRVVLEOH� TXDOLW\� OHYHOV�� 7KHVH� TXDOLW\� OHYHOV� UDQJH� IURP�
IXOO�TXDOLW\��ZKHQ�DOO�SDFNHWV�RI�WKH�ZLQGRZ�DUH�GHOLYHUHG��
WR�]HUR�TXDOLW\�ZKHQ�QRQH�LV�GHOLYHUHG��%HWZHHQ�WKHVH�WZR�
H[WUHPHV� OLH� D� QXPEHU� RI� TXDOLW\� OHYHOV�� RQH� IRU� HDFK�
SULRULW\�� ZKRVH� EDQGZLGWK� UHTXLUHPHQWV� FDQ� EH�
UHSUHVHQWHG� DV� D� SHUFHQWDJH� RI� WKH� IXOO� TXDOLW\� YLGHR�
EDQGZLGWK�� $V� GLVFXVVHG� LQ� 6HFWLRQ� ����� WKH� QXPEHU� RI�
SULRULW\� OHYHOV� DQG� WKHLU� FRUUHVSRQGLQJ� EDQGZLGWK�
SHUFHQWDJHV�GHSHQG�RQ�WKH�VFDODELOLW\�RI�WKH�YLGHR�VWUHDP��
WKH�ZLQGRZ�VL]H��DQG�WKH�XVHU�SUHIHUHQFHV��

,Q�)LJXUH����)LJXUH����DQG�)LJXUH����ZH�VKRZ�VDPSOHV�
RI�TXDOLW\� OHYHOV�DYDLODEOH� IRU�GLIIHUHQW�ZLQGRZ�VL]HV�DQG�
XVHU� SUHIHUHQFHV�� (DFK� V\PERO� �� LQ� WKH� SORW� DUHD�
UHSUHVHQWV�D�TXDOLW\�OHYHO��7KH�[�YDOXH�RI�WKH�V\PERO�LV�WKH�
ZLQGRZ�VL]H�LQ�ZKLFK�WKDW�TXDOLW\�OHYHO�LV�DYDLODEOH��WKH�\�

YDOXH� RI� WKH� V\PERO� LV� WKH� SHUFHQWDJH� RI� WKH� IXOO� TXDOLW\�
YLGHR�EDQGZLGWK�IRU�WKDW�TXDOLW\�OHYHO��)LJXUH���VKRZV�WKH�
DYDLODEOH� TXDOLW\� OHYHOV� ZKHQ� D� XVHU� SUHIHUV� WHPSRUDO�
TXDOLW\� DQG� 615� TXDOLW\� HTXDOO\��)LJXUH� �� VKRZV� WKH�
DYDLODEOH�TXDOLW\�OHYHOV�ZKHQ�D�XVHU�SUHIHUV�WKH�PD[LPXP�
WHPSRUDO�TXDOLW\��DQG�)LJXUH���VKRZV�WKH�DYDLODEOH�TXDOLW\�
OHYHOV�ZKHQ�D�XVHU�SUHIHUV�WKH�PD[LPXP�615�TXDOLW\���

,GHDOO\�� IRU� HDFK� ZLQGRZ� VL]H� WKHUH� VKRXOG� EH� PDQ\�
DYDLODEOH� TXDOLW\� OHYHOV� DQG� WKHLU� EDQGZLGWK� SHUFHQWDJHV�
VKRXOG�EH�HYHQO\�GLVWULEXWHG�LQ�RUGHU�WR�FORVHO\�PDWFK�WKH�
YDU\LQJ� QHWZRUN� EDQGZLGWK�� +RZHYHU�� WKH� VFDODELOLW\� RI�
YLGHR�HQFRGLQJ�DQG�WKH�ZLQGRZ�VL]H�GHWHUPLQH�KRZ�PDQ\�
SULRULWL]DEOH� DQG� LQGHSHQGHQWO\� GURSSDEOH� XQLWV� DUH� LQ� D�
ZLQGRZ� DQG� WKH� VL]HV� RI� WKHVH� XQLWV� GHWHUPLQH� WKH�
GLVWULEXWLRQ� RI� EDQGZLGWK� SHUFHQWDJH� IRU� TXDOLW\� OHYHOV��
)RU� WKH� ZLQGRZ� VL]H� RI� ����PV�� HDFK� ZLQGRZ� LQFOXGHV�
RQO\�RQH�03(*� IUDPH�DW�176&� UDWH�� ,I� QR� VFDODELOLW\� LV�
LQWURGXFHG��WKHUH�LV�RQO\�RQH�GURSSDEOH�XQLW�LQ�WKH�ZLQGRZ�
DQG� WKHUH� LV� RQO\� RQH� TXDOLW\� OHYHO� ZKDWHYHU� WKH� XVHU�
SUHIHUHQFH� LV�� ,I�ZH�GRXEOH� WKH� IUDPH� UDWH� �RU� GRXEOH� WKH�
ZLQGRZ� OHQJWK��� ZH� LQWURGXFH� VRPH� WHPSRUDO� VFDODELOLW\�
DQG� WKHUH�DUH� WZR�0(3*�IUDPHV� LQ� WKH�ZLQGRZ� WKXV� WZR�
GURSSDEOH� XQLWV� DQG� WZR� TXDOLW\� OHYHOV�� ,I� ZH� LQWURGXFH�
615� VFDODELOLW\� LQWR� 03(*� E\� XVLQJ� 63(*� HQFRGLQJ�
WKHUH�DUH�IRXU�TXDOLW\�OHYHOV�KHQFH�IRXU�GURSSDEOH�XQLWV�SHU�
IUDPH��

F
G F
H F
I F
J F
K F
L F
M F
N F
O F
G F F

F P FQI I P J�L L P NRG F F P HSG I I P LTG L M P FUH F F P JVH I I P NVH L M P HTI F F P LVI I J P FVI L M P JTJ F F P NVJ I J P HVJ L M P LTK F G P FVK I J P JW�X Y Z [\�] X ^ _�` a�] b

cd
efg h
ig jk

�
Figure 6. Adaptation granularity vs. window Size

(neutral preference)
,Q�RUGHU�WR�PLQLPL]H�ODWHQF\��ZH�QHHG�WR�PLQLPL]H�WKH�

ZLQGRZ�VL]H�ZKLOH�PDLQWDLQLQJ�D�ODUJH�HQRXJK�QXPEHU�RI�
HYHQO\� GLVWULEXWHG� TXDOLW\� OHYHOV� WR� HQDEOH� ILQH�JUDLQ�
DGDSWDWLRQ��)RU�63(*��D�ZLQGRZ�VL]H�RI������PV�VHHPV�WR�
EH�D�JRRG�FKRLFH��VLQFH�LW�KDV�PRUH�WKDQ����TXDOLW\�OHYHOV�
DQG�DOORZV�WKH�SLSHOLQH�WR�DFKLHYH�UHODWLYHO\�ORZ��OHVV�WKDQ�
���PV��WRWDO�HQG�WR�HQG�ODWHQF\��+RZHYHU��63(*�KDV�RQO\�
WZR� GLPHQVLRQV� RI� TXDOLW\� DGDSWDWLRQ�� WKH� WHPSRUDO�
DGDSWDWLRQ� DQG� WKH� 615� DGDSWDWLRQ�� DQG� WKH� 615�
DGDSWDWLRQ� LV� UHODWLYHO\� FRDUVH�JUDLQHG�� 7KXV�� DQ\� UHVXOWV�
REWDLQHG� ZLWK� 63(*� FRXOG� HDVLO\� EH� LPSURYHG� ZLWK�
VFDODEOH� YLGHR� HQFRGLQJV� WKDW� SURYLGH� ILQHU� JUDQXODULW\�

182

�

VFDODELOLW\��:LWK� LPSURYHG� VFDODEOH� YLGHR� HQFRGLQJ�� 336�
FRXOG� HDVLO\� VXSSRUW� LQWHUDFWLYH� VWUHDPLQJ�ZLWK� D� ODWHQF\�
UHTXLUHPHQW�RI�XQGHU����PV��

l
m l
n l
o l
p l
q l
r l
s l
t l
u l
m l l

l v lQo o v pwr r v txm l l v nSm o o v rSm r s v lyn l l v pTn o o v tTn r s v nTo l l v rTo o p v lTo r s v pTp l l v tTp o p v nTp r s v rTq l m v lTq o p v p
z�{ | } ~ ��� { � ��� ��� �

��
��� �
�� ��

�
Figure 7. Adaptation granularity vs. window size

(prefer temporal quality)

�
� �
� �
� �
� �
� �
� �
� �
� �
� �
� � �

��� ��� � � ��� � � ��� � � � �S� � ��� �y� � � � �V� � � � �U� � � � �U� � � � �U� � � � �V� � � � �V� � � � �T� � � � �U� � ��� �U� � � � �U� � � � �V� � � � �
�¡ ¢ £ ¤ ¥(¦ § ¨/© ª/¦ «

¬
®¯° ±
²° ³´

�
Figure 8. Adaptation granularity vs. window size

(prefer SNR quality)

���&RQFOXVLRQ�DQG�IXWXUH�ZRUN�

3ULRULW\� SURJUHVV� VWUHDPLQJ� LV� D� JHQHULF� DQG� HIILFLHQW�
PHFKDQLVP� IRU� ILQH�JUDLQ� DGDSWLYH� VWUHDPLQJ� RI� VWRUHG�
PHGLD�� +RZHYHU�� LW� LPSOLHV� LQFUHDVHG� ODWHQF\� IRU�
UHRUGHULQJ� GDWD� LQWR� SULRULW\� RUGHU� SULRU� WR� WUDQVPLVVLRQ�
DQG�IRU�UHRUGHULQJ�EDFN�LQWR�WLPH�RUGHU�DIWHU�WUDQVPLVVLRQ��
,Q� WKLV� SDSHU� ZH� H[SORUHG� WKH� UHDO� ZRUOG� LPSDFW� RI� WKLV�
UHRUGHULQJ� ODWHQF\� IRU� OLYH�VRXUFH� YLGHR� SLSHOLQHV�� :H�
VKRZHG� WKDW� HYHQ� XVLQJ� D� FRDUVH�JUDLQHG� VFDODEOH� YLGHR�
HQFRGLQJ�DSSURDFKHV�UHRUGHULQJ�ODWHQF\�FDQ�EH�UHGXFHG�WR�
XQGHU� ���PV�� PDNLQJ� WKH� DSSURDFK� DSSOLFDEOH� WR� PDQ\�
YLGHR�VXUYHLOODQFH�DSSOLFDWLRQV��$V�ILQHU�JUDQXODULW\�YLGHR�
HQFRGLQJV�EHFRPH�DYDLODEOH�� WKH� VDPH� OHYHO�RI� ILQH�JUDLQ�
DGDSWLYLW\�ZLOO�EH�DYDLODEOH�XVLQJ�HYHQ�VPDOOHU�UHRUGHULQJ�

ZLQGRZV��DQG� LQWHUDFWLYLW\�ZLOO�EH�HDVLO\� VXSSRUWHG�XVLQJ�
336��

,Q� WKH� IXWXUH�� ZH� SODQ� WR� H[WHQG� 336� IRU� PXOWLFDVW�
GHOLYHU\� DQG� WR�EXLOG� D�PDQ\�WR�PDQ\� YLGHR� VXUYHLOODQFH�
LQIUDVWUXFWXUH�XVLQJ�LW��

���5HIHUHQFHV�
>�@� -��&�� %RORW� DQG� 7�� 7XUOHWWL�� ³([SHULHQFH� ZLWK� FRQWURO�

PHFKDQLVPV� IRU� SDFNHW� YLGHR� LQ� WKH� ,QWHUQHW´�� $&0�
6,*&200� &RPSXWHU� &RPPXQLFDWLRQ� 5HYLHZ�� YRO�� ����
SS���������-DQXDU\�������

>�@� KWWS���IIPSHJ�VRXUFHIRUJH�QHW��
>�@� $��*RHO�DQG�-��:DOSROH��³*VFRSH��$�9LVXDOL]DWLRQ�7RRO�IRU�

7LPH�VHQVLWLYH� 6RIWZDUH´�� ,Q�3URFHHGLQJV� RI� WKH�)UHHQL[�
7UDFN� RI� WKH� ����� 816(1,;� $QQXDO� 7HFKQLFDO�
&RQIHUHQFH��-XQH�������

>�@� 6�� -DFREV� DQG� $�� (OHIWKHULDGLV�� ³6WUHDPLQJ� 9LGHR� 8VLQJ�
'\QDPLF� 5DWH� 6KDSLQJ� DQG� 7&3� &RQJHVWLRQ� &RQWURO´��
-RXUQDO� RI� 9LVXDO� &RPPXQLFDWLRQ� DQG� ,PDJH�
5HSUHVHQWDWLRQ�����������������������

>�@� &��.UDVLF� DQG� -��:DOSROH�� ³4R6�6FDODELOLW\� IRU� 6WUHDPHG�
0HGLD� 'HOLYHU\´�� &6(� 7HFKQLFDO� 5HSRUW� &6(���������
2UHJRQ�*UDGXDWH�,QVWLWXWH��6HSWHPEHU�������

>�@� &��.UDVLF�DQG�-��:DOSROH��³3ULRULW\�3URJUHVV�6WUHDPLQJ�IRU�
4XDOLW\�$GDSWLYH� 0XOWLPHGLD´�� ,Q� 3URFHHGLQJV� RI� WKH�
$&0�0XOWLPHGLD� 'RFWRUDO� 6\PSRVLXP�� 2WWDZD�� &DQDGD��
2FWREHU�������

>�@� &�� .UDVLF�� -�� :DOSROH�� DQG� :��)HQJ�� ³4XDOLW\�$GDSWLYH�
0HGLD� 6WUHDPLQJ� E\� 3ULRULW\� 'URS´�� 7R� DSSHDU� LQ�
1266'$9�������-XQH�������

>�@� +��/LX�DQG�0�(��=DUNL��³$GDSWLYH�6RXUFH�5DWH�&RQWURO�IRU�
5HDO�WLPH� :LUHOHVV� 9LGHR� 7UDQVPLVVLRQ´�� 0RELOH�
1HWZRUNV�DQG�$SSOLFDWLRQV������������������

>�@� 5��5HMDLH��0��+DQGOH\��DQG�'��(VWULQ�� ³5$3��$Q�(QG�WR�
(QG� 5DWH�EDVHG� &RQJHVWLRQ� &RQWURO� 0HFKDQLVP� IRU�
5HDOWLPH�6WUHDPV�LQ�WKH�,QWHUQHW´��,Q�3URFHHGLQJV�RI�,(((�
,1)2&20�� YROXPH� ��� SDJH� �����������1HZ�<RUN��1<��
0DUFK��������

>��@�%��9DQGDORUH��:��)HQJ��5�-DLQ��DQG�6��)DKP\��³$�6XUYH\�
RI�$SSOLFDWLRQ�/D\HU�7HFKQLTXHV� IRU�$GDSWLYH� 6WUHDPLQJ�
RI� 0XOWLPHGLD´�� -RXUQDO� RI� 5HDO� 7LPH� 6\VWHPV� �6SHFLDO�
,VVXH�RQ�$GDSWLYH�0XOWLPHGLD���-DQXDU\�������

>��@�'��:X��<��7��+RX��:��=KX��<�4�=KDQJ��DQG�-��0��3HKD��
³6WUHDPLQJ� 9LGHR� RYHU� WKH� ,QWHUQHW�� $SSURDFKHV� DQG�
'LUHFWLRQV´�� ,(((� 7UDQVDFWLRQ� RQ� &LUFXLWV� DQG� 6\VWHPV�
IRU�9LGHR�7HFKQRORJ\��92/������12�����0DUFK�������

183

APPENDIX K

Quality-Adaptive Media Streaming by Priority Drop. Charles Krasic, Jonathan Walpole, Wu-

chi Feng, in Proceedings of the 13th International Workshop on Network and Operating Systems

Support for Digital Audio and Video (NOSSDAV 2003), Monterey, California, June 2003.

184

http://www.cs.pdx.edu/~walpole/papers/nossdav2003.pdf

Quality›Adaptive Media Streaming by Priority Drop∗

Charles Krasic, Jonathan Walpole, Wu›chi Feng
OGI/OHSU

Beaverton, Oregon

krasic,walpole,wuchi@cse.ogi.edu

ABSTRACT
This paper presents a general design strategy for streaming
media applications in best effort computing and network-
ing environments. Our target application is video on de-
mand using personal computers and the Internet. In this
scenario, where resource reservations and admission control
mechanisms are not generally available, effective streaming
must be able to adapt in a responsive and graceful manner.
The design strategy we propose is based on a single sim-
ple idea, priority data dropping, or priority drop for short.
We evaluate the efficacy of priority drop as an adaptation
tool in the video and networking domains. Our technical
contribution with respect to video is to show how to ex-
press adaptation policies and how to do priority-mapping,
an automatic translation from adaptation policies to prior-
ity assignments on the basic units of video. For the net-
working domain, we present priority-progress streaming, a
real-time best-effort streaming protocol. We have imple-
mented and released a prototype video streaming system
that incorporates priority-drop video, priority mapping, and
priority-progress streaming. Our system demonstrates a
simple encode once, stream anywhere model where a single
video source can be streamed across a wide range of network
bandwidths, on networks saturated with competing traffic,
all the while maintaining real-time performance and grace-
fully adapting quality.

Categories and Subject Descriptors: C.2.2 [Computer
Systems Oraganization]: Network Protocols
General Terms: Algorithms, Measurement, Experimen-

tation
Keywords: Quality Adaptive Streaming, Priority Map-

ping, Internet

∗This work was partially supported by DARPA/ITO under
the Information Technology Expeditions, Ubiquitous Com-
puting, Quorum, and PCES programs and by Intel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’03, June 1–3, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-694-3/03/0006 ...$5.00.

1. INTRODUCTION
The Internet is a best-effort environment, where users

come and go without resource reservations or admission con-
trol. The Internet relies on a model of voluntary coopera-
tive sharing, the foundation of which is congestion control in
transport protocols, mainly TCP. It is widely acknowledged
that the use of congestion control has been an essential part
of the Internet’s stability to date [7]. If streaming traffic is
to avoid threatening the overall stability, then it too must
employ congestion control. Congestion control adapts the
sending rate of a flow to share with other flows on the path,
changing rates as traffic from other flows comes and goes.
As a result, Internet traffic is very bursty. Numerous studies
of Internet traffic patterns have shown that traffic rates ex-
hibit significant variation over the full range of time scales,
exhibiting so-called self-similar behavior [5, 30]. Given this
burstiness, it follows that it is highly unlikely that a single
target bitrate will suffice for Internet streaming. If the rate
estimate is too conservative, the video stream will under
utilize the network, and the resulting video quality will be
lower than necessary. On the other hand, if the rate esti-
mate is too aggressive, then the transfer can not complete in
real-time and so there will be a streaming failure. For longer
duration streaming, the chances are good that a single rate
will be too conservative at some times and too aggressive at
others. Several researchers have recognized these issues, and
proposed quality-adaptation instead of single-rate streaming
[31].

There have been many proposed techniques for the adap-
tive delivery of compressed video data over networks. The
common idea of quality-adaptive streaming techniques is to
adapt dynamically to environmental changes through ad-
justments in the rate-distortion ratio of the video. Adapting
quality over best-effort networks is extremely difficult given
the bit-rate changes that occur over time in both.

In this paper, we describe a design strategy for quality-
adaptive streaming software. Our strategy revolves around
the idea of using priority data dropping, priority drop for
short, as the primary means of adaptation. In priority drop,
the basic data units of the media are explicitly exposed and
appropriately prioritized, with the goal that priority-order
dropping of data units will yield a graceful reduction in me-
dia quality, as we will show in the experimentation section.
Our contributions are in two areas, video adaptation and
network streaming.

The video component of our system makes compressed
video streaming friendly through support of priority drop.
We describe a video format, called SPEG (Scalable MPEG),

185

to illustrate how current video compression techniques can
be extended to support priority drop1. In contrast to ran-
dom dropping, which results in unusable video at dropping
levels of just a few percent, priority drop is informed and
can achieve graceful degradation, over more than an order
of magnitude in rate. One of the main questions that arises
when considering such a range of target rates is what aspect
or aspects of video to degrade? The answer can be influ-
enced by several factors, such as the nature of the content,
the nature of the viewing device, the personal preferences of
authors, viewers, etc. For example, a sports program might
benefit most from preserving fidelity of motion, perhaps at
the expense of color fidelity. A user with a PDA may place
low relative importance on spatial resolution, compared to
a user with a full sized screen.

The scalable coding aspects of SPEG are not our main
focus, but rather our main contribution to video entails
efficient support for tailorable adaptation. We describe a
simple method to specify adaptation policies and an associ-
ated priority-mapping algorithm. The priority-mapping al-
gorithm translates the policy specifications into appropriate
priority assignments on data units of priority-drop video.
With this approach, video compression is decoupled from
the final adaptation, which opens the possibility that each
piece of content may be adapted in different ways for dif-
ferent scenarios, with far lower complexity than actually re-
compressing or transcoding the content during streaming.
This added flexibility makes content more re-usable. The
ideal streaming-friendly media format would have the char-
acteristics of “encode-once, stream anywhere.”

The second component of our contribution is in network
streaming. We present an algorithm for real-time best-effort
streaming called Priority-Progress streaming (PPS). PPS
combines data re-ordering and dropping to maintain time-
liness of streaming in the face of unpredictable throughput.
The data units of the priority-drop video are sent in prior-
ity order. The algorithm is best effort in that it allows the
congestion control mechanism to decide appropriate sending
rates. When this sending rate is low, the timeliness of the
stream is maintained by dropping low-priority data units
at the sender, before they would otherwise reach the net-
work. In this way, the amount of higher-priority data sent
automatically matches the rate decisions of the congestion-
control mechanism.

We have implemented a streaming system which inte-
grates SPEG, priority-mapping, and PPS, with the follow-
ing results. First and foremost, it maintains timeliness of
the stream in the face of rate fluctuations in the network.
Second, PPS makes full use of available bandwidth, and
achieves full goodput from that bandwidth, thereby max-
imizing the average video quality. The bandwidth used is
limited by the congestion control of the underlying trans-
port, in our case TCP, so the usage represents a fair share,
in friendly consideration of the Internet’s existing traffic
mix [7]. Third, it starts quickly when the user initiates
the stream, avoiding a long pre-buffering period. Finally,
it limits the number of quality changes that occur, by using
bandwidth skimming to increase client-side buffering con-
current during normal playout. The overall message of our
results is that priority drop is very effective: a single video
can be streamed across a wide range of network bandwidths,

1SPEG is similar to MPEG FGS, but easier to implement
with publicly available software

on networks heavily saturated with competing traffic, while
maintaining real-time performance and gracefully adapting
quality.

The remainder of this paper is organized as follows. In
the next section we discuss problem background and related
work. In Section 3, we describe priority-drop video and pri-
ority mapping. In Section 4 we describe the details of the
PPS algorithm. Section 5 presents experiments and results
from our prototype streaming video system. Finally, discus-
sion and conclusions are in Section 6.

2. BACKGROUND
Most streaming content on the Internet today is provided

using one of three streaming platforms: Microsoft’s Win-
dows Media, Real Networks RealSystem, and Apple’s Quick-
Time. To various degrees, these systems adhere to a suite
of standards related to streaming such as RTP, RSTP, SIP,
and SMiL. [9, 8, 26, 27]. Quality adaptation algorithms are
outside the scope of any of these standards. In particular,
while adaptation might be layered on RTP, RTP does not
provide any direct algorithm for quality adaptation. These
commercial systems all employ proprietary quality adapta-
tion. Although these proprietary adaptation mechanisms
are largely secret, we make some high level observations in
the following paragraphs based on published information.

In addition to commercial activity, there has been exten-
sive academic research related to video streaming over the
Internet. The research spans several distinct domains, in-
cluding video compression, real-time systems, and network-
ing. A spectrum of adaptive strategies have been proposed
to deal with the consequences of best effort service [31]. One
of the most commonly used strategies is one-time adapta-
tion, where the user chooses between a small set of pre-
determined rates before streaming begins. Once started,
streaming is fixed at this single-rate regardless of compet-
ing traffic, hence this approach retains the basic problems of
single-rate streaming mentioned earlier, where it is prone to
yield lower quality than necessary when more bandwidth is
available and prone to complete failure when less bandwidth
is available. Both problems are more probable for longer du-
ration content. Apple’s Quicktime uses one-time adaptation
and in addition it adjusts the amount of client-side buffer-
ing based on measured rate volatility during startup [29].
Startup time, while initial buffering is established, can be
quite high—on the order of tens of seconds. Windows Me-
dia and RealSystem based systems are often configured in
this mode also, even though they do support more advanced
mechanisms, which we’ll describe below. In the remainder
of this section, we expand on the basic performance issues
for quality-adaptive streaming, in light of some of the ap-
proaches proposed in the literature and in terms of the com-
mercial streaming systems.

The related work to this paper falls into four main cat-
egories. Multi-version techniques store a single video at a
range of pre-selected bitrates (e.g. Windows Media Intel-
liStream and Real’s SureStream) [4, 1]. While simple to
implement, multi-version supports only coarse adaptation
and under utilizes storage. Online scaling techniques sup-
port changing the target rate parameter of the encoder or
the transcoder on the fly. While these support fine-grained
adaptation, the computational time required to recode limits
scalability of these approaches. Scalable video coding tech-
nologies focus on creating compression formats that allow

186

adaptation of the rate-distortion relationship without ex-
plicitly re-coding (e.g. MPEG-2 scalability, MPEG-4 FGS).
These techniques are complementary to the work we de-
scribe here. Advances in these areas can be directly incor-
porated into our framework. While the first three categories
are concerned mainly with video representation and coding,
the fourth category is adaptive streaming which concerns the
mechanics of actual network delivery.

Ideally, a quality-adaptive streaming system will select
video quality to match the average available network band-
width. In practice, adaptation tends to be limited to dis-
crete steps, and consequently the rate match is only approx-
imate. A system that supports steps with finer-granularity
generally results in a better match, which manifests itself in
higher quality and better reliability of streaming. The type
of video compression, especially whether the compression is
scalable or not, is a major factor influencing the granularity
of quality-adaptive streaming.

Because many of the compression formats in common use
are not explicitly scalable [15, 14, 16, 13], the target rate is
a required parameter for encoding. These formats do not
provide explicit support for adapting rate after encoding.
Frame dropping is a well known work-around, and is prob-
ably the most popular video adaptation mechanism, having
been used since the first quality-adaptive Internet streaming
systems appeared [2].

Online-scaling techniques, which include live encoding,
transcoding, and data-rate shaping (DRS), allow changing
the target rate parameter of the encoder or transcoder on
the fly [17, 32]. Transcoding and DRS can have significantly
lower computational complexity than encoding. The main
advantage of online scaling is very fine granularity. However,
even the most efficient DRS is very computationally inten-
sive relative to non-adaptive streaming, or adaptive stream-
ing through frame dropping or multi-coding. This extra
computational cost poses a major obstacle to supporting
very large numbers of independently adaptable streams in
servers and edge devices.

In contrast, scalable compression aims to support low-
complexity adaptation that will scale to large numbers of
streams. Scalable compression schemes explicitly support
multiple quality levels, exposing two or more layers in the
encoded video. The layers are progressive, the higher layers
depend on the lower layers, and the higher layers are used to
refine quality. The various scalable compression approaches
differ in terms of granularity, ranging from very coarse, as
in the work in Layered Multicast [23] and MPEG-2 Scala-
bility [10], to very fine, such as in recent work in MPEG-4
and H.26L Fine Granularity Scalability [22, 11]. With the
current state of the art, scalable video compression comes
with a compression efficiency penalty, in that video quality is
lower compared to the results of non-scalable compression
at the same rate, but this penalty is getting smaller [11].
Fine granularity scalability through layering makes it possi-
ble to begin streaming without even knowing the target rate,
by sending lower layers before higher layers and truncating
higher layers if time runs out. Contrast this approach with
online-scaling, where the quality adaptation must commit
to a target rate before encoded data is ready to transmit. In
exchange for the small efficiency penalty, scalable compres-
sion offers a significant boost in freedom for the design of
adaptive streaming mechanisms.

A principal concern with streaming is the potential im-

pact of video traffic on existing Internet traffic. Many re-
search projects have studied quality adaptive streaming in
relationship with TCP-friendly congestion control [31, 25,
3, 6, 17, 28, 19]. A common idea among them is to let
the transport protocol and its congestion control dictate
the appropriate sending rate. The main differences are in
the details of deciding what to send and what to drop, and
what information are used to inform these control decisions.
For example, Rejaie et al describe their algorithms for op-
timal streaming [25], where optimal means minimal client-
side buffering, and thus a minimal associated contribution to
end-to-end latency. The role of their algorithm is to control
adding and removing quality layers, where the control deci-
sions are based on a rate-driven feedback control. The de-
sign of their control is based on analysis of additive-increase
multiplicative-decrease (AIMD) congestion control2 and an
assumption of apriori knowledge of video rate requirements
[25]. Feamster et al extend this work to more general con-
gestion control mechanisms [6]. In contrast to these systems
that explicitly attempt to match rates, Feng et al describe
an adaptive streaming algorithm that uses a sliding window
over video frames, sending data from low to high quality, in
best effort fashion [3]. Feng’s algorithm gains simplicity be-
cause it does not attempt to absolutely minimize client-side
buffering, and has the advantage of working without direct
assumptions about the design of the underlying congestion
control. Kang et al. [18] propose a priority-driven adapta-
tion, but assuming fixed bandwidth channels. The question
of how to link scalable video encoding and tailorable adap-
tation policies to TCP-friendly streaming is open, and is the
topic of this paper.

We use scalable compression and TCP in this paper. One
of the contributions of our approach is to demonstrate the
benefits of using the priority-timestamp packet as the ba-
sic unit of media abstraction, as opposed to video frames,
or layers in a stream. Through priority-mapping, we extend
scalable video compression to support tailorable adaptation,
so that compromises made in quality better reflect the in-
fluence of specific content, viewing devices, and user prefer-
ences. Our Priority-Progress Streaming algorithm extends
TCP-friendly adaptive streaming to support direct control
over quality compromises in streaming, such as latency lim-
its, and limits on the number of quality changes, while pre-
serving the goals of high utilization and video quality.

3. STREAMING-FRIENDLY VIDEO
In this section we will describe how scalable video com-

pression can support tailorable adaptation through priority
drop. This consists of a scalable video format and a Pri-
ority Mapper. We have implemented an adaptive stream-
ing system based on our approach, called the Quasar Video
Pipeline. In lieu of a freely available implementation of the
more recent scalable compression systems [22, 11], we have
developed a minimal scalable compression format we call
SPEG (Scalable MPEG), derived from MPEG-1 video. Our
purpose in implementing SPEG was to test priority map-
ping and PPS using real video. Priority mapping is the
main subject of this section, but we first give a brief de-
scription of SPEG for the benefit readers not familiar with
scalable compression formats such as MPEG-4 FGS.

2TCP’s congestion control uses an instance of AIMD after
it reaches steady state.

187

3.1 Scalable Video
In MPEG video, each frame is broken down into 8x8 pixel

blocks, which are converted to corresponding 8x8 blocks
of coefficients using the discrete-cosine transform (DCT).
Quantization, strategic removal of low order bits from these
coefficients, is the primary basis for compression gains in
MPEG and very many other similar compression schemes.
SPEG transcodes MPEG coefficients to a set of levels, one
base level and three enhancement levels as follows. If we
denote the original MPEG coefficients X[i, j], then SPEG
partitions this coefficient data according to the following
equations3:

Xbase[i, j] = X[i, j] >> 3
Xe0[i, j] = (X[i, j] >> 2) & 1
Xe1[i, j] = (X[i, j] >> 1) & 1
Xe2[i, j] = X[i, j] & 1

The coefficients from each level are grouped to form layers,
four per original MPEG frame, which are the basic applica-
tion level data units (ADUs) in SPEG. The above steps can
be reversed to return SPEG back to the original MPEG. Al-
ternatively, we can drop some or or all of the enhancement
layer ADUs (from high to low) substituting zero values for
the missing data. The effect of such dropping is analogous to
having used higher quantization parameters during MPEG
encoding, yielding lower bitrate in exchange for less spatial
fidelity. We present SPEG because it suffices to demonstrate
the essential properties of scalable compression and because
it is readily available to us. Our techniques would apply to
most scalable formats, e.g. MPEG-4 FGS.

We expect future scalable codecs will expose even more
scalability mechanisms. One example is spatial-size scala-
bility, where the number of pixels of height and width are
scalable. Another example is chroma scalability which might
allow a range of color fidelities, from 4:4:4 to 4:2:2 to 4:1:1
to greyscale to monochrome. The object based compression
techniques might allow content adaptation through addition
and removal of objects[16]. These possibilities raise the is-
sue of tailorable adaptation. In order to take full advantage
of all of these scalability options, there would need to be a
good way to control how they are used together. To explore
tailorable adaptation, we use SPEG’s spatial scalability in
combination with frame dropping to provide a minimal ex-
ample of a compression scheme with more than one scala-
bility mechanism.

3.2 Priority Mapping
Having more than one quality dimension leads to the is-

sue that choosing how to best adapt the multiple dimensions
may depend on the usage scenario. For example, the tar-
get device may have a small screen, so preserving frame-rate
may make more sense than spatial detail. A user may want
to repeat a scene in slow motion, which looks smoother if
more frames are inserted. Conversely, skipping frames is
harder to notice when doing fast-forward scan. We have de-
signed a priority-mapper with the intent of providing a gen-
eral and flexible approach to tailoring quality adaptation to
such specific quality preferences. The priority-mapper auto-
matically assigns priorities to the units of a media stream,

3The >> denotes the right bitwise shift operator, and the
& denotes the bitwise and operation.

Priority
Mapper

ADUs SDUs

Adaptation
Policy

Figure 1: Priority Mapper

so that priority drop yields the most graceful degradation,
as appropriate to the viewing scenario.

Figure 1 depicts the mapper used in the Quasar Video
Pipeline. The mapper’s inputs are application data units
(ADUs) and the quality adaptation policy. The mapper’s
output are streaming data units (SDUs) which are aggre-
gates of prioritized ADUs, where the aggregation is based
on ADUs which have the same priority and timestamp value.
The purpose of the aggregation is to isolate the PPS algo-
rithm from low level details of the video format, particularly
the data dependencies that exist between ADUs.

ADU
length: ...
timestamp: 66
type: B
level: enh
... payload ...

5

ADU
length: ...
timestamp: 0
type: I
level: enh
... payload ...

1ADU
length: ...
timestamp: 0
type: I
level: base
... payload ...

0 ADU
length: ...
timestamp: 33
type: P
level: base
... payload ...

2

ADU
length: ...
timestamp: 66
type: B
level: base
... payload ...

4ADU
length: ...
timestamp: 33
type: P
level: enh
... payload ...

3

Figure 2: ADUs

Figure 2 shows a sequence of ADUs. The ADUs have a
packet like form, consisting of a fixed-length header, and a
variable length payload. The header contains basic infor-
mation needed by the mapper, such as the length of the
payload, a timestamp, and payload specific flags. For ex-
ample, with SPEG these flags indicate the type of MPEG
frame the ADU is part of (I, B, or P), and to which spatial
scalability layer the ADU belongs4.

3.2.1 Specification of Adaptation Policies

lost quality

utility

unacceptable

excessive

quality

quality
threshold

threshold

Figure 4: A utility function with thresholds

qmax qmin

1

0

Figure 3: A utility function with thresholds

4To simplify our examples, figure 2 depicts only two spatial
layers, although our SPEG implementation has four.

188

We use utility functions as declarative specifications for
the adaptation policy. A utility function is a simple and
general means for users to specify their preferences. Figure
3 depicts the general form of a utility function. The hor-
izontal axis describes an objective measure of lost quality,
while the vertical axis describes the subjective utility of a
presentation at each quality level. The region between the
qmax and qmin thresholds is where a presentation is accept-
able. The qmax threshold marks the point where lost quality
is so small that the user considers the presentation “as good
as perfect.” The area to the left of this threshold, even if
technically feasible, brings no additional value to the user.
The rightmost threshold qmin demarks the point where lost
quality has exceeded what the user can tolerate, and the pre-
sentation is no longer of any use. The utility levels on the
vertical axis are normalized so that zero and one correspond
to the “useless” and “as good as perfect” thresholds. In the
acceptable region of the presentation, the utility function
should be continuous and monotonically decreasing, reflect-
ing the notion that decreased quality should correspond to
decreased utility. In the case of priority mapping for SPEG,
the adaptation policy consists of two utility functions, one
for spatial quality and one for temporal quality.

3.2.2 Automatic Translation from Policy to Priorities
The mapping algorithm subdivides the timeline of the me-

dia stream into intervals called mapping windows. The size
of the interval is a parameter to the mapping algorithm, but
may be adjusted in order to meet alignment requirements;
for example, the mapping window is a sequence of one or
more complete GOPs for SPEG. The mapping algorithm
prioritizes the ADUs within each window separately. For all
ADUs in a given mapping window, the mapping algorithm
finds the order in which ADUs may be dropped that has
the minimum impact, given the data dependency rules of
the video and the preferences specified via the given util-
ity functions. The final priority assignment will be used by
the streaming algorithm to guide quality adaptations, while
accurately reflecting user preferences.

We use the ADUs from figure 2 as an example mapping
window, which consists of a single GOP and spans the in-
terval 0–66 ms. The priority mapping algorithm processes
the ADUs within a window in two phases.

In the first phase, the ADUs are partially ordered, accord-
ing to a drop before relationship5, based on video data de-
pendencies. For example, the spatial layering requires that
base layer ADUs should not be dropped before their cor-
responding enhancement layer ADUs, which applies to the
ADUs of figure 2 as follows:

ADU1 => ADU0 ADU3 => ADU2 ADU5 => ADU4

Similarly, MPEG’s predictive coding rules (for I,P,B frames)
are expressed as follows:

ADU4 => ADU2 => ADU0

These first two sets of ordering constraints represent hard
dependency rules, in that they simply reflect SPEG seman-
tics. The mapper adds some other soft dependency rules
which improve adaptation results. With video, for example,
the mapper would add soft-dependencies so to ensure that

5This is really drop no-later than, since dropping is always
optional.

frame dropping be as evenly spaced as possible6. After the
first mapping phase, there still remains significant freedom
for adaptation. For example, figure 4 contains two very dif-
ferent mappings for the ADUs of figure 2, yet both mappings
adhere to the phase one constraints above.

SDU
length: ...
timestamp: 0
priority: 0

ADU0

ADU1

0 SDU
length: ...
timestamp: 0
priority: 1

1

ADU3

ADU2

SDU
length: ...
timestamp: 0
priority: 2

2

ADU4

ADU5

(a) Frame drop

SDU
length: ...
timestamp: 0
priority: 0

ADU0

ADU2

0 SDU
length: ...
timestamp: 0
priority: 1

1

ADU3

ADU1

ADU4 ADU5

(b) Spatial drop

Figure 4: SDUs: prioritized and grouped ADUs

The second phase of the priority mapper algorithm is
where the adaptation policy is used to refine the partial or-
dering from the first phase, generating the (totally ordered)
prioritized SDUs.

The algorithm works through an iterative process of elim-
ination over the ADUs. We say an ADU is alive if it is still
in the set of unprioritized ADUs, and dead otherwise. Each
iteration considers the set of candidate ADUs which are not
yet dead, initially all ADUs from the mapping window, and
have no living dependents, based on the constraints gener-
ated by the first phase. For each of these candidate ADUs,
and each quality dimension (spatial and temporal in SPEG),
the mapper computes the presentation quality would result
if the candidate ADU were dropped, that is, the quality is
computed based on all ADUs that are still alive, less the
current candidate. For the temporal quality dimension, the
mapper computes the frame rate, and for spatial quality the
spatial level. At this point the mapper is ready to apply the
adaptation policy. The utility functions are used directly to
convert the computed quality values to corresponding utili-
ties. The “overall utility” for each ADU is just the minimum
of its per dimension utilities. The candidate ADU that has
the highest utility is selected as the next victim; i.e. drop-
ping this ADU next has the smallest impact on utility. The
priority value for the victim ADU is a linear (inverse) fitting
of the utility into the range of priority values. For example,
in the Quasar pipeline this fit goes from a utility range of
0 to 1 to a priority range of 15 to 07. The iterations stop
when all ADUs have been assigned a priority.

Once all the ADUs have priorities, they are then grouped
into SDUs, one per priority level. The SDUs are all set to

6If half the frames are to be dropped, then it is best to drop
every other frame, as opposed to more clustered dropping
such as keeping even GOPs and dropping odd GOPs
7Maximum priority is 15

189

Video Resolution Length GOP
(frames) length

Giro d’Italia 352x240 1260 15
Wallice and Grommit 240x176 756 3
Jackie Chan 720x480 2437 8
Apollo 13 720x480 864 6
Phantom Menace 352x240 4416 16

Figure 5: Movie Inputs. The movies were coded
with several different MPEG encoders. A variety
of content types, movie resolutions, and GOP pat-
terns were chosen to verify our techniques perform
consistently.

have the timestamp of the first ADU in the window. This
grouping simplifies matters for later stages, like the PPS
algorithm and the video decoder8.

3.3 Mapping Results
We now present some the results of mapping for several

test movies. Figure 5 describes the set of movies used, which
were prepared with a variety of encoders and encoder param-
eters. In figure 6(a) and (b) we set a quality adaptation pol-
icy consisting of equal linear utility functions for temporal
and spatial quality. Figures 6(c) and (d), show the priority-
assignment produced by the mapper. At each threshold, the
quality corresponds to when all packets with priority lower
than the threshold are dropped. For example, at priority
threshold 6, 20 fps is achieved at SNR level 3.

0 5 10 15 20 25

Temporal Resolution (fps dropped)

0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity

(a) Temporal Utility

0 1 2 3

Spatial Resolution (levels dropped)

0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity

(b) Spatial Utility

0 5 10 15

Drop Threshold

0

10

20

30

Fr
am

e
R

at
e

(f
ps

)

(c) Temporal Quality

Giro d’Italia
Wallace and Gromit
Jackie Chan
Apollo 13
Phantom Menace

0 5 10 15

Drop Threshold

0

1

2

3

4

SN
R

 le
ve

l (
av

er
ag

e)

(d) Spatial Quality

0 5 10 15

Drop Threshold

0

20

40

60

80

100

B
an

dw
id

th
 (%

)

(e) Bandwidth Resource Consumption

0 5 10 15

Drop Threshold

0

20

40

60

80

100

C
PU

 ti
m

e
(%

)

(f) CPU Resource Consumption

Preferences Presentation QoS Resource QoS

Figure 6: QoS Mapping Applied to SPEG

Ideally, the presentation quality graphs would look the
same as the utility functions they were derived from. In
particular, the range of acceptable presentation QoS would
be covered, and the shape of adaptation would follow the
shapes of the utility functions. Figure 6(c) shows the rela-

8Otherwise there can be pathological cases during streaming
where low priority ADUs for one timestamp are kept even
though higher priority ADUs with different timestamps, but
belonging to the same mapping window, are dropped. For
example, a P frame (low priority) might be kept when it’s
I frame (high priority) was dropped, however the P frame
can not be decoded properly without the dropped I frame.

tionship between presentation-QoS for temporal resolution
(frame rate) and priority-drop threshold. It should be noted
that figure 6(c) contains lines for each of the test movies,
but they overlap very closely because the mapper is able
to label packets to follow the utility function policy closely.
Although desirable, this result was not entirely expected be-
cause MPEG’s inter-frame dependencies constrain the order
in which frames can be dropped, and some GOP patterns
are particularly poorly suited to frame dropping. On the
spatial resolution side, in figure 6(d), we note that the map-
per drops resolution levels uniformly across all frames, re-
sulting in a stair-shaped graph, since there are only 4 SNR
levels in SPEG. In as much as the SPEG format allows, the
presentation-QoS matches the specified user preferences.

The resource side of the adaptation profiles are shown in
the third pair of graphs in Figures 6(e) and (f). We show the
average bandwidth of the movies at each drop threshold, as a
percentage of the bandwidth when no packets are dropped.
Similarly, we show the CPU time required for client side
processing (decoding) of the video at each drop threshold,
where the values are normalized to the CPU cost when no
packets are dropped. A good shape for these graphs would
be smooth and linear over a wide range of resource levels.
We see that bandwidth in Figure 6(e) does indeed range all
the way down to only a few percent. What this means is that
the quality-mapper can prioritize the video to operate in
extremely diverse networking and computing environments.
CPU time in Figure 6(f) is very nice and smooth, although
it does not cover as much range as bandwidth, and reaches a
minimum of about 10 percent. We also note that the movies
are closely clustered in their resource-QoS graphs, indicating
that adaptation is independent from differences in encoders
or encoder parameters. Further results for other policies are
presented in [21].

4. PRIORITY PROGRESS STREAMING
In this section, we present an overview of the PPS al-

gorithm. While the priority-drop video encoding and the
priority-mapper described in the previous section do a sub-
stantial amount of preparation for delivery, the streaming
algorithm still plays a key role in realizing the benefits of
adaptive streaming.

The objective of our streaming algorithm is to take the
SDUs produced by the Priority Mapper, and using their
timestamp and priority labels, perform real-time adaptive
streaming over a TCP-friendly transport. As it happens,
our implementation of the algorithm works quite well over
an unmodified TCP protocol.

The PPS algorithm works by subdividing the timeline of
the video into disjoint intervals called adaptation windows.
Adaptation windows are distinct from the mapper windows
described in the previous section, an adaptation window
consists of one or more mapper windows.

Figure 7 shows the conceptual outline of Priority-Progress
Streaming. A pair of re-ordering buffers is employed around
a bottleneck, which in our case is the TCP session. The
buffers contain the SDUs of an adaptation window. The al-
gorithm for Priority-Progress Streaming contains three sub-
components, the upstream buffer, downstream buffer, and
progress regulator respectively. The upstream buffer admits
all SDUs within the time boundaries of an adaptation win-
dow, these boundaries are chosen by the progress regulator.
Each time the regulator advances the window forward, the

190

Upstream Downstream

Progress
Regulator

Regulator Clock

Phase Adjust/
Downstream

Clock

ADUs
(timestamp

order)

Regulator Clock

SDUs
(priority
order)

Bottlneck

Figure 7: Priority-Progress Conceptual Architec-
ture

unsent SDUs from the old window position are expired and
the window is populated with SDUs of the new position.
SDUs flow from the buffer in priority-order through the bot-
tleneck to the downstream adaptation buffer, as fast as the
bottleneck will allow. In order to sort into priority order,
the buffer is implemented via a priority queue data struc-
ture. Similarly, the downstream adaptation buffer collects
SDUs and re-orders them to timestamp order. When SDUs
arrive late because of unexpected delays through the bottle-
neck, the progress regulator is notified so that it may avoid
late SDUs in the future. The downstream buffer receives as
many SDUs as the bandwidth of the bottleneck will allow
and the rest, which are of lowest priority, are dropped at the
server. In this way, the dropping will adapt video quality to
match the network conditions between the sender and the
receiver.

Window Prepare Transmit Display
Number Start End Start End Start End

1 0 1 1 2 2 3
2 1 2 2 3 3 4
3 2 3 3 4 4 5
4 3 4 4 5 5 6
5 4 5 5 6 6 7

Table 1: Priority Progress Example

As described in the paragraph above, each adaptation
window goes through three distinct processing phases. The
first phase is window preparation, which includes retrieval
from the source (file or live capture), prioritization, and
re-ordering from timestamp to priority order. The second
phase is window transmission, where the SDUs are trans-
mitted in priority order. The third phase is decoding and
display. Table 1 gives a simple example for a sequence of
five adaptation windows, where each row describes the tim-
ing of the phases for the nth adaptation window.

4.1 Responsiveness and Consistency
The basic premise of streaming is to start display as soon

as possible relative to the start of transmission. Quality
adaptive streaming has the added objective to adjust video
quality so as to make full use of the available bandwidth,
both to increase average quality and to prevent long term
rate fluctuations from disrupting the stream entirely. How-

Figure 8: Adaptation Window Transmission: There
are at most two quality levels per window.

ever, it is also true that it is preferable to avoid exposing
the user to visible quality changes. The size of adaptation
windows in PPS determine important trade-offs between
streaming latency, buffer space requirements, robustness to
rate changes, and the consistency of quality. Smaller win-
dows have the advantage of shorter startup delay, because
the algorithm does not allow display of a window until trans-
mission is fully completed. Larger windows have the ad-
vantage that quality will change less often, and larger rate
fluctuations can be smoothed out.

In Priority-Progress, the sizes of the adaptation windows
have a direct effect on the number of quality changes. Figure
8 shows how the final quality level, for a given adaptation
window, is determined by the transmission order used in Pri-
ority Progress. The SDUs for the window are transmitted
primarily in priority-order, and secondarily in timestamp
order, as in the figure. So the transmission pattern is like
filling the rectangle from left to right, bottom to top. In
the end, there are (upto) two priority levels that have been
reached, hence two quality levels, as shown by the dashed
line9. Then in the limit, the total number of changes for the
whole video is two times the number of adaptation windows
in the video timeline. In this way, longer adaptation win-
dows directly ensure more consistent quality, in that longer
windows decrease the number of possible quality changes.

4.2 Window Scaling
The fact that shorter and longer adaptation windows each

have their benefits reflects what is likely an inherent trade-off
between responsiveness and consistency in adaptive stream-
ing. However, it is not necessary to restrict all window sizes
to the same value. The Priority-Progress algorithm includes
the option to adjust the window size during the streaming
process, which we call window scaling. With window scal-
ing, the window duration starts out minimal, so that startup
latency is minimal, and then the window duration grows
with each new window as the stream plays. As the win-
dow durations get larger, the quality changes become less
frequent. Compared to a fixed window duration, we will
see that window scaling yields dramatically better balance
between responsiveness and consistency.

Window scaling is possible because Priority Progress can
transmit the video at a faster (or slower) rate than it will

9This assumes that quality for a single priority level is uni-
form, which is true for our priority mapper algorithm.

191

Window Prepare Transmit Display
Number Duration Start end Duration Start End Duration Start End

1 1 0 1 0.5 1 1.5 1 1.5 2.5
2 2 1 3 1 1.5 2.5 2 2.5 4.5
3 4 3 7 2 2.5 4.5 4 4.5 8.5
4 8 7 15 4 4.5 8.5 8 8.5 16.5
5 16 15 31 8 8.5 16.5 16 16.5 32.5

Table 2: Window Scaling Example: windows grow at 100% rate

be consumed at the receiver. The consumption rate at the
receiver is naturally fixed to the videos “real time” rate, but
transmission schedule is not so constrained. The priority
dropping mechanism is what affords flexibility in this re-
spect. Sending a window faster just means that more SDUs
may be dropped. In altering the transmission schedule, the
Priority Progress algorithm can create (or reclaim) worka-
head in the streaming schedule, which is what allows subse-
quent adaptation windows to be larger (or smaller). Worka-
head accumulates whenever the duration of the transmission
phase is shorter than the display phase. By definition, the
transmission of the first adaptation window is a preroll win-
dow which establishes the initial workahead. With the ex-
ception of the preroll window, the accumulated workahead is
the upper bound on duration of each step of the transmission
phase. We call the ratio between duration of a transmission
phase step and the duration of the corresponding display
phase step the window scaling growth ratio.

Table 2 describes a timeline for five adaptation windows,
where the growth ratio is fixed at 2. As in table 1, each
row in the table describes processing for a single adaptation
window. The columns show when the timing of the three
phases for each window. We use a growth ratio of 2 here
as it results in relatively simple numbers, but in practice we
use more modest ratios. The results in the next section are
based on a ratio of 1.1.

4.3 Priority-Progress Streaming Results
In this section, we describe experiments and results for

PPS using our Quasar pipeline implementation. Our ex-
perimental setup consists of a group of Linux based PCs
acting both as end hosts and as a router in a dedicated
network testbed that implements a saturated network path.
The router runs the NISTNet wide area network emulation
package [24], which allows us to introduce artificial delay and
bandwidth limitations. For the experiments presented here,
we set the delay to produce a 50ms round-trip-time. We also
set a bandwidth limitation of approximately 25Mbps and
impose a queue length limit that matches the bandwidth
delay product. For the entire duration of the experiments,
the network is saturated with competing traffic.

We have written a synthetic traffic generator, called mxtraf

[20], that we use to generate the various levels and mixes of
competing traffic. The mix is made up of non-responsive
UDP traffic (10%), short-lived (20Kb) TCP flows (~60%),
and long-lived infinite-source TCP flows (~30%), similar to
measurements reported in [12] . Our experiments consist
of streaming a two hour video through this saturated net-
work path. To provide baseline performance references, we
simulate two existing streaming algorithms assuming they
are given the same video and available bandwidth from our

experiments. The first algorithm is based on the Berkeley
CMT, and the second on Feng’s technique[3]. We then show
the performance of PPS in two cases, the first using a fixed
adaptation window, and the second with the PPS adapta-
tion window scaling feature enabled.

Figure 9(a) shows the transmission rate of the TCP ses-
sion used to transport the video. Figure 9(b) shows the
maximum rate requirement of the video, which is signifi-
cantly above the rate achieved by our TCP stream in the
given conditions. For each streaming algorithm we show
the frame-rate and SNR level achieved over the course of
the whole stream10. Figures 9(c) and 9(d) show that the
CMT algorithm has great difficulty with the conditions of
our experiment. Video quality is extremely volatile, and
there are several instances where the algorithm is not able
to deliver even the minimum quality. Figures 9(e) and 9(f)
show the sliding window algorithm fares much better, with
fewer quality changes and no failures. Figures 9(g) and 9(h)
show PPS with a fixed adaptation window behaves quite
similarly to the sliding window approach. It would be pos-
sible to improve the consistency of PPS in the fixed window
case by increasing the size of the window, but that would
come at the direct expense of startup latency. The major
benefits of PPS arise the adaptive window scaling is enabled,
shown in figures 9(g) and 9(h), where quality gets more con-
sistent over the course of the stream. In the majority of
the movie, quality changes are several minutes apart, even
though startup latency is in the range of 1 second.

5. CONCLUSIONS AND FUTURE WORK
Streaming video over the Internet remains a compelling

and challenging problem. While video compression addresses
the issue of limited bandwidth, it is only recently that scal-
able compression has addressed the extra problem of highly
variable bandwidth as on the Internet. Also recently, there
has been consensus that video traffic should employ TCP
friendly congestion control if it is to avoid threatening ex-
isting traffic and stability. In this paper, we presented a
framework for adaptive video streaming centered around the
simple concept of priority drop. We showed how, through
priority-drop, to combine scalable compression and adaptive
streaming in to form a very effective, tailorable, adaptive
streaming system, supporting an encode-once, stream any-
where model. For future work, we are considering several
extensions of the Quasar pipeline, including incorporating
Priority-Progress streaming to an Application Level Mul-
ticast Overlay, extending Priority-Progress to inter-stream
adaptation, and incorporating video compression with bet-
ter and more scalability options.

10Recall SPEG has four SNR levels

192

 0
 0.5

 1
 1.5

 2
 2.5

 0 20 40 60 80 100 120

M
bi

ts
/s

Minutes

(a) Video stream TCP Transmission Rate
(smoothed to 1s intervals)

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 20 40 60 80 100 120

M
bi

ts
/s

Minutes

(b) Maximum Video Rate

 0
 5

 10
 15
 20
 25

 0 10 20 30 40 50 60 70 80 90 100 110 120

fp
s

Minutes

(c) CMT (2s buffer)

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80 90 100 110 120

SN
R

 le
ve

l

Minutes

(d) CMT (2s buffer)

 0
 5

 10
 15
 20
 25

 0 10 20 30 40 50 60 70 80 90 100 110 120

fp
s

Minutes

(e) Sliding Window Smoothing (60s window)

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80 90 100 110 120

SN
R

 le
ve

l

Minutes

(f) Sliding Window Smoothing (60s window)

 0
 5

 10
 15
 20
 25

 0 10 20 30 40 50 60 70 80 90 100 110 120

fp
s

Minutes

(g) PPS (10s window fixed)

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80 90 100 110 120

SN
R

 le
ve

l

Minutes

(h) PPS (10s window fixed)

 0
 5

 10
 15
 20
 25

 0 10 20 30 40 50 60 70 80 90 100 110 120

fp
s

Minutes

(i) PPS with adaptive window scaling (10%)

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80 90 100 110 120

SN
R

 le
ve

l

Minutes

(j) PPS with adaptive window scaling (10%)

Figure 9: Sub-figure (a) shows the transmission rate in a saturated network over a two hour period. Sub-
figure (b) shows the maximum rate of the video. Sub-figures (c)-(j) show the resulting video quality with
each of four streaming algorithms.

193

6. REFERENCES
[1] B. Birney. Intelligent Streaming.

http://msdn.microsoft.com/, October 2000.

[2] S. Cen, C. Pu, R. Staehli, C. Cowan, and J. Walpole.
A Distributed Real-Time MPEG Video Audio Player.
In Network and Operating System Support for Digital
Audio and Video, pages 142–153, 1995.

[3] W. chi Feng, M. Liu, B. Krishnaswami, and
A. Prabhudev. A Priority-Based Technique for the
Best-Effort Delivery of Stored Video. In SPIE/IS&T
Multimedia Computing and Networking 1999, San
Jose, California, January 1999.

[4] G. Conklin, G. Greenbaum, K. Lillevold, and
A. Lippman. Video Coding for Streaming Media
Delivery on the Internet. IEEE Transactions on
Circuits and Systems for Video Technology, 11(3),
March 2001.

[5] M. E. Crovella and A. Bestavros. Self-similarity in
World Wide Web traffic: evidence and possible causes.
IEEE/ACM Transactions on Networking,
5(6):835–846, 1997.

[6] N. Feamster, D. Bansal, and H. Balakrishnan. On the
Interactions Between Layered Quality Adaptation and
Congestion Control for Streaming Video. In 11th
International Packet Video Workshop (PV2001),
Kyongiu, Korea, April 2001.

[7] S. Floyd and K. Fall. Promoting the Use of
End-to-End Congestion Control in the Internet.
IEEE/ACM Transactions on Networking, August
1999.

[8] S. M. W. Group. Synchronized Multimedia
Integration Language (SMIL) 1.0 Specification.
Technical report, World Wide Web Consortium, 1998.
http://www.w3.org/TR/REC-smil.

[9] M. Handley, H. Schulzrinne, E. Schooler, and
J. Rosenberg. SIP: Session Initiation Protocol. RFC
2543, March 1999.

[10] B. G. Haskell, A. Puri, and A. N. Netravali. Digital
Video: An Introduction to MPEG-2, chapter 9.
Chapman & Hall, 1997.

[11] Y. He, F. Wu, S. Li, Y. Zhong, and S. Yang.
H.26l-based fine granularity scalable video coding. In
ISCAS, 2002.

[12] G. Iannaccone, M. May, and C. Diot. Aggregate
Traffic Performance with Active Queue Management
and Drop from Tail. Computer Communication
Review, 31(3), July 2001.

[13] IEC. 61834 Helical-scan digital video cassette
recording system using 6,35 mm magnetic tape for
consumer use (525-60, 625-50, 1125-60 and 1250-50
systems). International Standard, 1999.

[14] ISO/IEC. 13818-2 Information technology — Generic
coding of moving pictures and associated audio
information: Video . International Standard, 1993.

[15] ISO/IEC. 11172-2 Information technology – Coding of
moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s — Part 2:
Video. International Standard, 1994.

[16] ISO/IEC. 14496-2 Information technology — Coding
of audio-visual objects — Part 2: Visual. International
Standard, December 1999. First edition.

[17] S. Jacobs and A. Eleftheriadis. Streaming Video using

Dynamic Rate Shaping and TCP Flow Control. Visual
Communication and Image Representation Journal,
January 1998. (invited paper).

[18] S. H. Kang and A. Zakhor. Packet Scheduling
Algorithm for Wireless Video Streaming. In Packet
Video 2002, Pittsburgh, April 2002.

[19] J.-W. Kim, Y.-G. Kim, T.-Y. K. H.-J. Song, Y.-J.
Chung, and C.-C. J. Kuo. TCP-friendly Internet
Video Streaming employing Variable Frame-rate
Encoding and Interpolation. IEEE Transaction on
CSVT, 10, October 2000.

[20] C. Krasic, A. Goel, and K. Li. The MxTraf Network
Traffic Generator. http://mxtraf.sf.net/.

[21] C. Krasic and J. Walpole. QoS scalability for streamed
media delivery. CSE Technical Report CSE-99-011,
Oregon Graduate Institute, September 1999.

[22] W. Li, F. Ling, and X. Chen. Fine Granularity
Scalability in MPEG-4 for Streaming Video. In
Proceedings of IEEE International Symposium on
Circuits and Systems (ISCAS 2000), Geneva,
Switzerland, May 2000. IEEE.

[23] S. McCanne, M. Vetterli, and V. Jacobson.
Low-Complexity Video Coding for Receiver-driven
Layered Multicast. IEEE Journal on Selected Areas in
Communications, 16(6):983–1001, August 1997.

[24] NIST. The NIST Network Emulation Tool.
http://www.antd.nist.gov/itg/nistnet.

[25] R. Rejaie, M. Handley, and D. Estrin. Quality
Adaptation for Congestion Controlled Video Playback
over the Internet. In Proceedings of ACM SIGCOMM
’99 Conference, Cambridge, MA, October 1999.

[26] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson. RTP: A Transport Protocol for
Real-Time Applications. RFC 1889, January 1996.

[27] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time
Streaming Protocol (RTSP). RFC 2326, April 1998.

[28] D. Sisalem and H. Schulzrinne. The Loss-Delay Based
Adjustment Algorithm: A TCP-Friendly Adaptation
Scheme. In Proceedings of NOSSDAV, Cambridge,
UK., 1998.

[29] Unknown. Fast-start vs Streaming.
http://www.apple.com/quicktime/.

[30] W. Willinger, M. S. Taqqu, R. Sherman, and D. V.
Wilson. Self-similarity through high-variability:
statistical analysis of Ethernet LAN traffic at the
source level. IEEE/ACM Transactions on Networking,
5(1):71–86, 1997.

[31] D. Wu. Streaming Video over the Internet:
Approaches and Directions, 2001.

[32] N. Yeadon. Quality of Service Filters for Multimedia
Communications. PhD thesis, Lancaster University,
Lancaster, May 1996.

194

APPENDIX L

A Domain Specific Language for Component Configuration. Mark P Jones. Internal Draft for

distribution to PCES TDs, May 8, 2002.

195

Internal Draft of May 8, 2002

 1

A Domain Specific Language for Component Configuration

Mark P Jones
Department of Computer Science & Engineering

OGI School of Science & Engineering

Oregon Health & Science University

Introduction

This note describes a domain specific language (DSL) for component configuration in the

Boeing Open Experimental Platform (OEP). The purpose of the DSL is to make it easier for

system integrators to construct and validate configurations from concise, modular, and reusable

high-level descriptions. The design of the DSL reflects common patterns, terminology, and

notations used in the specific domain, which in this case have to do with initializing software

components, and establishing connections between them. By providing direct support for

domain specific idioms, a DSL empowers its users to express their ideas quickly and concisely,

to work more productively, to avoid certain kinds of coding error, and to tackle more complex

problems than might otherwise be possible. The DSL that we describe here, for instance, has

been used to produce a clear and modular description of the largest example in the current OEP

build that is approximately 25 times smaller than the original description written in XML.

Component Configuration in Build 1.6.1 of the Boeing OEP

The Boeing OEP is a set of software applications that has been provided for use in the MoBIES

and PCES programs as a platform for experimentation and testing of new software development

tools and technologies. The OEP provides a library of configurable software components that

are representative of the components used in aircraft control, navigation, and tracking systems

together with configuration tools and a CORBA-based run-time infrastructure.

In Build 1.6.1 of the OEP, component configurations are described by means of hand-written

XML data files, and a custom tool is used to turn these descriptions into executable C++ code.

196

Internal Draft of May 8, 2002

 2

The build includes several examples of these XML configuration files. These files encode a

collection of product scenarios, each of which is described independently and at a high-level in a

separate document using a mixture of prose and graphical notations. These examples are quite

small and are intended primarily as illustrations to help researchers develop a better

understanding of the domain. Even the largest example, referred to as Scenario 1.4, has only 50

components; the corresponding XML file is about 120K bytes long, comprising 3285 lines of

XML data. By comparison, a more realistic example that is representative of systems being

flown today (or planned for future development) could involve hundreds or even thousands of

components. Scaling the techniques used in the OEP examples to a point where they can be used

with these larger examples is clearly a significant challenge.

There are several reasons why the XML descriptions are quite large, even for simple

configurations. First and foremost, the systems being described are fundamentally complex; they

involve many components and rely on sophisticated an intricate patterns of communication. The

verbose, textual representation of data XML also contributes significantly to the size of the

configuration files. Manipulating these large files by hand using generic text or XML editors is

difficult and error-prone. For example, in studying the XML data for Scenario 1.4, we uncovered

several different kinds of errors—from simple typos to errors in the structuring of XML data,

redundant code, and inconsistencies between the original written specification of the system and

its representation in XML. None of these bugs, however, were easy to find and indeed, in our

opinion, the number of errors found was surprisingly low given the size and complexity of the

specification, and the relatively early stage of development.

One significant source of complexity arises from the need to map between the high-level view at

which the prose/graphical descriptions of the components are specified in the OEP

documentation, and the overall structure of the configuration files, which reflects more directly

the mechanisms of component configuration in the context of the CORBA component model

(CCM). In Figure 1, we see some indication of the semantic gap that must be bridged by the

translation between these two views. The diagram on the left of the figure is a collaboration

diagram describing the simplest example in the OEP, which is referred to as Scenario 1.1. In this

197

Internal Draft of May 8, 2002

 3

example, a gps object is triggered at 40Hz, and communicates in push-pull style with an airframe

object that, in turn, drives a display unit, navDisplay.

Figure 1:Different views of Component Configuration for Scenario 1.1

The text on the right of the figure shows a fragment of the XML code for the same example.

(This has been heavily trimmed; the original comprises 195 lines of XML.) Clearly, this version

of the specification is organized in a very different manner, broken down at the top-level with

one section for each processor in the system (in this case, there is only one processor, which is

referred to as BM__PROCESSOR1). For each processor, the configuration script specifies multiple

configuration passes (typically, two) that describe how to construct, initialize and connect the

components that it will host. Passes are, in turn, described as sequences of “homes,” each of

which groups together all the components of a particular type. For example, all

BM__DeviceComponent objects, such as gps, will be placed in one home, while all

BM__ClosedEDComponent objects, such as airframe, will be described in another. The communication

between the gps and airframe components in this example is reflected by declaring gps as an event

supplier in the BM__DeviceComponent home, and by listing it again in an event consumer declaration

for airframe in the home for BM__ClosedEDComponent. In general, these declarations should be

placed in separate configuration passes to meet an OEP requirement that all event suppliers are

defined before any of the matching event consumers. In the terminology of aspect-oriented

programming, these examples illustrate the classic problems of tangling, in which a single high-

level aspect at the design level becomes a cross-cutting concern in the XML description.

<?xml version="1.0" encoding="UTF-8"?>

<CONFIGURATION>

 <PROCESSOR>

 <NAME> BM__PROCESSOR1 </NAME>

 <CONFIGURATION_PASS>

 <HOME> ... component type id ...

 <COMPONENT>

 ... individual component

 declarations ...

 </COMPONENT>

 </HOME>

 ...

 </CONFIGURATION_PASS>

 ...

 </PROCESSOR>

</CONFIGURATION>

198

Internal Draft of May 8, 2002

 4

Tangling of a different kind occurs in the XML description of configurations that are constructed

from a collection of smaller, independent subsystems. Scenario 1.2 in the OEP distribution is a

simple example of this, as illustrated in Figure 2.

Figure 2: Collaboration Diagram for Scenario 1.2, comprising two similar but distinct subsystems

Here, the portion of the configuration on the left is just a copy of Scenario 1.1, while the portion

on the right connects three new components in a very similar pattern. Indeed, the only difference

between the two halves of this diagram, other that the choice of components, is that the left

portion is triggered at twice the frequency of the left (40Hz versus 20Hz). Unfortunately, the

XML description of Scenario 1.2 does not reflect these observations. Instead, it provides a

monolithic view of the whole system, mixing together information about the left and right halves

and making it harder to see the two pieces and independent subsystems, and harder still to see the

structural similarities between the two halves. For example, information about the gps

component is placed together with information about the cursorDevice component in the home for

BM__DeviceComponent objects, even though these components serve completely independent roles in

the full system. This weaving together of component descriptions is entirely appropriate for the

purposes of runtime configuration, but also limits opportunities for modularity, reuse, and

abstraction in the way that systems are described. Again, we see a semantic gap here, with the

burden of translating between the design and runtime views of component configuration placed

firmly in the hands of the authors of XML configurations.

gps :

BM DeviceComponent

navDisplay :
BM__DisplayComponent

airframe :
BM__ClosedEDComponent

The GPS
component is time
triggered at 40Hz

5. Update()2. Update()

6. GetData1()

4. Push()

DATA_AVAILABLE

3. GetData1()

1. Push()

DATA_AVAILABLE

cursorDevice :

BM DeviceComponent

tacticalDisplay :
BM__DisplayComponent

selectedPoint :
BM__ClosedEDComponent

The cursor
component is time
triggered at 20Hz

11. Update()8. Update()

9. GetData1()

7. Push()

DATA_AVAILABLE

12. GetData1()

10. Push()

DATA_AVAILABLE

199

Internal Draft of May 8, 2002

 5

There are also significant semantic bridges to be built (and crossed!) at lower levels. For

example, in the OEP documentation, the product scenarios are described in terms of periodic

signals that are used to trigger components at particular frequencies such as 1Hz, 10Hz, or 20Hz.

In the corresponding XML files, however, these frequencies must be translated into time

intervals such as 1000000, 100000, or 50000 (measured in micro-seconds). The author of each

XML description of a configuration must perform this translation by hand, and, in this particular

case, with special care to avoid errors; it is all too easy to enter the wrong number of trailing

zeroes on these large numbers.

Another detail that makes it hard to find errors in the XML data is that the format for describing

component configurations is not particularly well defined. The OEP distribution does include an

XML document type definition (DTD) for configuration files, but it is intended only as a guide,

and is followed only loosely in the examples. This gives the creators of the XML data more

latitude and flexibility in describing a particular configuration, but also prevents the use of a

validating XML parser to check that the XML meets simple structural constraints. Even with a

DTD, however, there are still some important typing constraints that cannot be enforced. For

example, event types are specified using an EVENT_TYPE element in the XML data whose content is

a string that represents a single integer value, as in <EVENT_TYPE>1000000</EVENT_TYPE>. Entering

some other string here would be an error, but nothing in the current process of authoring or

processing the XML data will flag this as a problem. Of course there are more sophisticated

methods for specifying XML files (XML Schema, for example) that can catch errors like this, but

they still cannot address more global typing problems such as ensuring that an event consumer

and the corresponding event sender use the same event type.

Towards a Domain Specific Language for The Boeing OEP

In the previous section, we highlighted several problems with the XML format that is used to

describe component configurations in the OEP, at least from the perspective of somebody who

must construct those descriptions by hand. In the past, similar observations about the difficulties

of writing programs at a low-level using either machine code or assembly language prompted the

development of new high-level languages, allowing programmers to focus more directly on the

200

Internal Draft of May 8, 2002

 6

problems that they needed to solve, and leaving details of the translation to a particular target

machine to a compiler. Since then, the same strategy has been used in many times over, and the

design and use of domain specific languages (DSLs) is widely recognized as a technique for

improving programmer productivity and software reliability. A good DSL captures common

patterns, terminology, idioms, and notations that are used in a specific domain, allowing domain

experts to focus their attention on solving problems as quickly and effectively as possible,

without being distracted by lower level concerns. Some of the most well-known and widely used

DSLs include SQL (for describing database queries), yacc (for constructing parsers

corresponding to context free grammars), HTML (for describing the content and layout of a web

page), and LaTeX (for describing the structure and text in a typeset document). As these

examples illustrate, DSLs are not designed as general purpose programming languages, but are

instead designed to meet a specific need.

While the benefits of using a DSL may be appreciated, the cost of designing and implementing a

new language of any kind can be quite high, and hard to justify in the context of projects whose

deliverables are something other than new language processing tools. Economic pressures like

these are especially strong in the case of DSLs for highly specialized domains where the

potential market, or user base is very small.

Of course, there has been much work to develop technologies that will allow more rapid design,

prototyping, experimentation, and application of new and effective DSLs. Building on a long

history of work within the Pacific Software Research Center (PacSoft) at OGI, the Project

Timber team brings extensive technical expertise in this area to the PCES program. In particular,

the team is focused on the development of a new DSL called “Timber” that is designed to

facilitate the construction and analysis of high-assurance, and portable real-time systems from

high-level descriptions by encapsulating time-oriented and quality of service programming

patterns. In fact, Timber is more than just a simple DSL; it is a foundation on which more

specific DSLs can be built. For example, as a demonstration vehicle for the project’s key

technologies, we are using Timber to construct a DSL for programming applications on a mobile

robot that involves both hard real-time control tasks and softer real-rate components such as

video capture and streaming.

201

Internal Draft of May 8, 2002

 7

As we learned about the Boeing OEP, however, it became clear that we could also use Timber to

build a new DSL for describing the configuration of components in the OEP. The resulting DSL

will be described in the remaining sections of this paper. In fact, our OEP DSL does not make

use of any of the new features that Timber provides to support explicit declaration of temporal

behavior, reactive programming, or concurrency; while these are all important features of

systems described by an OEP configurations, they are not properties of the configurations

themselves. Nevertheless, the OEP DSL described here provides good evidence for the

flexibility and expressiveness of Timber’s core by virtue of its success in supporting a domain

for which it was not originally designed. Of course, our current DSL reflects only a partial

understanding of the domain; we have benefited already from the OEP documentation and from

direct interaction with members of the Boeing team, but the DSL described here should only be

considered a first prototype. We hope that by further interaction, we will be able to develop our

DSL to the point where it provides a tool that the domain experts at Boeing can use to build

larger configuration scenarios in a fraction of the time, and with less risk of errors than is

possible using the current handwritten XML format.

Describing Scenario 1.1 using a DSL for Component Configuration

We will introduce the features of our OEP DSL informally, and in stages, using a series of

examples. The syntax that we use reflects our current implementation, but many aspects could

be changed quite easily, as needed, to provide a better fit with the notation used by domain

experts. Our first example is a description of Scenario 1.1, previously illustrated in Figure 1:

scenario11 = do processor "BM__PROCESSOR1"

 -- This is where we define the components in this scenario

 airframe <- new closedED(100, 110, "AIRFRAME")

 gps <- new device(200, 220, "GPS")

 navDisplay <- new display(300, 330, "NAV_DISPLAY")

 -- This is where we describe the connections between them

 trigger 20 ==> gps

 event0 gps ==> airframe # fullChannel

 event1 airframe ==> navDisplay # fullChannel

202

Internal Draft of May 8, 2002

 8

The first line here specifies a name for the configuration (scenario11) and begins its definition

with the keyword do, which begins a sequence of commands. The sequence of commands splits

naturally into three sections:

• The first section, comprising the single command processor "BM__PROCESSOR1", sets the

name of the processor for subsequent commands. This, of course, corresponds directly to

uses of the <PROCESSOR> tag in the original XML description.

• The second section begins with a comment1 and then three lines to declare the gps,

airframe, and navDisplay components that play a role in this scenario. Each declaration

specifies a component type (such as device, closedED, or display—each of which is defined

elsewhere in a reusable library) together with group id and item id numbers and a human

readable name string that can be used to identify the component at run-time. The id

numbers used here were chosen to match the corresponding numbers in the XML

description. We believe that it might be possible to generate appropriate id numbers

automatically, in which case this aspect of our component description could be further

simplified. (It is certainly possible to do this within our DSL; the question is whether this

is appropriate to the domain and, if so, what scheme should be applied to generate

suitable id numbers.) This example also illustrates the syntax, val <- cmd, for obtaining

the return value, val, of a command, cmd. The command new device(200, 220, "GPS") could

be used by itself to add a new component labeled "GPS" to a configuration, but there

would be no way to refer to it again in the rest of the configuration without the handle,

gps, that the call to new provides.

• The final section describes how the individual components are connected together. The

first line, trigger 20 ==> gps, specifies that the gps component should be triggered at a

frequency of 20 Hz. As the notation suggests, the trigger 20 portion of this command is

used to describe the timing signal, while the reference to gps on the right of the ==>

1 The two characters “--” begin a single line comment. Multi-line comments, beginning with “{-” and terminated

by a corresponding “-}”, are also supported.

203

Internal Draft of May 8, 2002

 9

operator specifies the receiver. The last two lines use a different mechanism to specify an

event source: in a style that is (by design) reminiscent of variable declarations in C, C++

or Java, the notation event0 gps specifies that the gps component generates events of type

event0, which is a standard event type and is again declared separately in a reusable

library. As the remaining portion of this example describes, the gps events are sent to the

airframe, which, in turn, passes events of type event1 to the navDisplay. The ==> operator

used here captures a push-pull style of communication between components that is used

throughout the OEP. As such, it specifies the source component as an event supplier and

the receiver as an event consumer, but it also adds a receptacle that the consumer can use

to query the supplier. This allows the supplier to send a relatively lightweight

“DATA_AVAILABLE” event to the consumer, which can then query the consumer

selectively for any further information that it requires. A final comment is needed to

explain the # fullChannel annotation on these last two lines, which describes an aspect of

Scenario 1.1 that is not captured explicitly in the diagram shown in Figure 1. To avoid

cluttering commands with unnecessary details, our OEP DSL assumes default settings for

some configuration parameters. In this case, the fullChannel annotation specifies that

events should be delivered using the full event channel implementation that is included as

part of the OEP infrastructure. Without this addition, the mechanism for event delivery

would be left unspecified in the configuration, and would instead be set by the event

channel at runtime.

As the length of this description suggests, our short DSL program provides a lot of information

about the configuration of components in Scenario 1.1, but it is still quite readable. More

importantly, by construction, it localizes the description of a single connection to a single point

in the program; it avoids unnecessary repetition of details (for example, component ids are

specified only once; subsequent references to a component use the handle returned by new); and it

prevents errors such as an event type mismatch between suppliers and consumers, or the

declaration of an event supplier with no consumers.

When an OEP DSL program is executed, it builds a database that describes the complete

component configuration. Working within the Timber interpreter, we can use a command of the

204

Internal Draft of May 8, 2002

 10

form writeXML “config.xml” scenario11 to run our program and use the resulting database to

generate an XML configuration file, config.xml, which is suitable for input to the OEP tools. We

can also view the XML directly on screen using the command showMe scenario11. Other uses of

the configuration database could be accommodated in a similar way. Possible applications

include static analysis tools and checkers that can verify critical properties or search a

configuration for errors; optimization tools that detect and remove sources of inefficiency or

unnecessary redundancy; and visualization tools that can generate graphical views of a particular

configuration automatically, both for documentation and for visual confirmation of correctness.

Modularity, Reuse, and Abstraction in the OEP DSL

One simple but important detail that we mentioned only in passing during our presentation of

Scenario 1.1 is the fact that we were able to give the program a name, scenario11. This is a

simple form of abstraction—a mechanism that allows programmers to name and use fragments

of code, or more general patterns within code—and an important first step towards increased

software reuse and modularity. Here, for example is a description of Scenario 1.2 that builds

directly on the definition of Scenario 1.1:

scenario12 = do scenario11 -- reuse the definition of Scenario 1.1

 selectedPoint <- new closedED(400, 440, "SELECTED_POINT")

 cursorDevice <- new device(500, 550, "CURSOR_DEVICE")

 tacticalDisplay <- new display(600, 660, "TACTICAL_DISPLAY")

 trigger 10 ==> cursorDevice

 event0 cursorDevice ==> selectedPoint # fullChannel

 event1 selectedPoint ==> tacticalDisplay # fullChannel

The first line here references the original description of Scenario 1.1; as a result, when we

execute scenario12, we will automatically run the commands that are needed to build scenario11.

The remaining lines add the new components for Scenario 1.2, and the connections between

them using the same notations as before. The structure of this definition makes it much easier to

see how Scenario 1.2 inherits from Scenario 1.1, while also maintaining a clear separation

between the two distinct subsystems. Moreover, if some details of Scenario 1.1 need to be

changed at a later date, then the definition of Scenario 1.2 will also inherit those modifications,

205

Internal Draft of May 8, 2002

 11

simplifying program maintenance, and avoiding the need to duplicate details across multiple

configurations.

In other respects, the definition of scenario12 is straightforward, and follows the same pattern as

we saw in scenario11. Such similarities are unlikely to be accidental, and can often be found in

situations where the same basic design pattern is used over and over again. By abstracting out

the key structure as a reusable chunk of code, we can again produce more modular descriptions

that are easier to maintain and reuse. In this particular situation, we can recognize a common

pattern in the way that groups of three components are strung together in a pipeline, and driven

by a time triggered event signal. In our OEP DSL, this pattern can be described as follows:

pipe3 freq dev filt disp = do trigger freq ==> dev

 event0 dev ==> filt # fullChannel

 event1 filt ==> disp # fullChannel

Here, pipe3 gives a name to the whole pattern, while freq, dev, filt, and disp are the parameters2

that can be expected to vary from one instantiation to the next. With this definition in place, we

can rewrite the previous definitions of scenario11 and scenario12 to use our new pipe3 abstraction:

scenario11a = do processor "BM__PROCESSOR1"

 airframe <- new closedED(100, 110, "AIRFRAME")

 gps <- new device(200, 220, "GPS")

 nav_display <- new display(300, 330, "NAV_DISPLAY")

 pipe3 20 gps airframe nav_display

scenario12a = do scenario11a

 selectedPoint <- new closedED(400, 440, "SELECTED_POINT")

 cursorDevice <- new device(500, 550, "CURSOR_DEVICE")

 tacticalDisplay <- new display(600, 660, "TACTICAL_DISPLAY")

 pipe3 10 cursorDevice selectedPoint tacticalDisplay

This is a small example, and the pattern that we have abstracted is very simple so the immediate

benefits of the transformation used here are quite modest. In larger examples, however, this

facility for abstracting and generalizing over code patterns like this becomes more important.

Our use of abstraction reduces the number of lines of code, but more importantly, it collapses a

sequence of commands into a single conceptual unit that is easier to recognize and understand.

2 Timber uses an “applicative” syntax for function parameters, which means that parentheses are not needed when

the argument to a function is a simple value like a constant or a variable name.

206

Internal Draft of May 8, 2002

 12

Other Features of the OEP DSL

The example programs given in previous sections have already explained the key mechanisms of

the OEP DSL, but we will continue here and in the next section to introduce some of the

remaining features by showing how they are used to encode some of the other scenarios from the

OEP documentation, culminating, in the next section, in a compact rendering of Scenario 1.4.

We start, however, with Scenario 1.6, which is designed to illustrate how configurations can be

designed to work in environments where some physical components—such as a sensor device on

an aircraft—may or may not be present. From the perspective of component configuration, the

basic structure here looks much the same as in Scenario 1.1, except that a different type of

component is used for the airframe, and a new ins (inertial navigation system) component is

added as an event supplier. (The ins is defined as a cyclicDevice, which is a special component

provided by the OEP infrastructure that alternates between valid and invalid states at a frequency

of 0.5Hz to simulate a component that is not always operational.)

scenario16 = do processor "OCP_P1"

 airframe <- new prioritizedEvent(100, 110, "AIRFRAME")

 disp <- new display(200, 220, "DISPLAY")

 gps <- new device(300, 330, "GPS")

 ins <- new cyclicDevice(400, 440, "INS")

 trigger 20 ==> ins

 trigger 20 ==> gps

 [dataAvail ins, dataAvail gps] ==> airframe # fullChannel

 dataAvail airframe ==> disp # fullChannel

The dataAvail event mentioned here is a new event type that OEP components use to send a

DATA_AVAILABLE signal. New event types can be introduced by specifying the integer code that will

used to represent the event at runtime (corresponding to the contents of an <EVENT_TYPE> element

in an XML configuration file).

dataAvail = event 1000000

The event constructor used here will only allow an integer constant—such as 1000000—to be used

as an event identifier; any attempt to use a different type of value will trigger a diagnostic and

prevent the user from running the program until the error has been corrected. Moreover, this is

the only place in our programs where we will use the constant, 1000000; in all other places, we

207

Internal Draft of May 8, 2002

 13

refer to the event by the name dataAvail, so there is little chance that we will mistakenly use

different identifiers for the same event type in different parts of our program.

The other new feature in scenario16 appears in the last but one line of the definition, which

describes a connection from a list [dataAvail ins, dataAvail gps] of event suppliers to the

airframe consumer. In fact our OEP DSL provides lists as a built-in type, together with a

collection of operators that allow programmers to construct and manipulate list values. The map

operator, for example, can be used to apply a function f to each element of a list: The expression

map f [e1, …, en] is just another way of writing the list [f e1, …, f en], and hence the list of event

suppliers mentioned previously can also be written as map dataAvail [ins, gps]. More generally,

we can define a new operator, +=>, as a variant of ==>, that connects a list of suppliers, each

producing a dataAvail event, to a consumer:

suppliers +=> consumer = map dataAvail suppliers ==> consumer

With this definition in place, we can rewrite the definition of scenario16 as follows:

scenario16 = do processor "OCP_P1"

 airframe <- new prioritizedEvent(100, 110, "AIRFRAME")

 disp <- new display(200, 220, "DISPLAY")

 gps <- new device(300, 330, "GPS")

 ins <- new cyclicDevice(400, 440, "INS")

 trigger 20 ==> ins

 trigger 20 ==> gps

 [ins, gps] +=> airframe # fullChannel -- this line has been changed

 dataAvail airframe ==> disp # fullChannel

It is also useful to specify that the same event supplier (or list of suppliers) should be connected

to multiple receivers. In the code for scenario16, for example, both the ins and gps components

expect to receive a timing signal at 20Hz. We can capture this pattern with a general “fanout”

operator, ==<, which is another general-purpose variation on the ==> operator. (The “<” character

at the end of the name ==< was chosen as a visual reminder of operator’s fanout behavior.) It is

actually quite easy to define this operator within our DSL although a detailed explanation is

beyond the scope of this report; for now it suffices to notice that the definition is very concise:

suppliers ==< consumers = mapM_ (suppliers ==>) consumers

208

Internal Draft of May 8, 2002

 14

(This definition is, in fact, included as a standard part of our DSL implementation.) This fanout

operator can now be used to provide a new version of the definition for Scenario 1.6:

scenario16 = do processor "OCP_P1"

 airframe <- new prioritizedEvent(100, 110, "AIRFRAME")

 disp <- new display(200, 220, "DISPLAY")

 gps <- new device(300, 330, "GPS")

 ins <- new cyclicDevice(400, 440, "INS")

 trigger 20 ==< [ins, gps] -- this line has been changed

 [ins, gps] +=> airframe # fullChannel

 dataAvail airframe ==> disp # fullChannel

For a final variation on scenario16, we note that the last two commands in the definition specify a

particular method of event delivery using the same fullChannel annotation. Instead of repeating

the same annotation on each command in a given sequence, we can apply a single annotation to a

whole sequence by prefixing a do expression with the annotation, as in the following, and final

version of Scenario 1.6:

scenario16 = do processor "OCP_P1"

 airframe <- new prioritizedEvent(100, 110, "AIRFRAME")

 disp <- new display(200, 220, "DISPLAY")

 gps <- new device(300, 330, "GPS")

 ins <- new cyclicDevice(400, 440, "INS")

 trigger 20 ==< [ins, gps]

 fullChannel (do [ins, gps] +=> airframe -- changes here

 dataAvail airframe ==> disp) -- and here …

So far we have only seen one annotation, fullChannel, but there are several others that can be

used in the same way, including via ERM—an alternative delivery mechanism to fullChannel—and

correlate—used to request correlation of events. We will see uses of both in the next section.

To conclude this section, we present, without detailed comment, a rendering of Scenario 1.7 from

the OEP documentation; all of the constructs used here have been introduced in the previous

examples and should now seem quite familiar.

scenario17 = do processor "OCP_P1"

 airframe <- new closedED(100, 110, "AIRFRAME")

 disp <- new display(200, 220, "DISPLAY")

 gps <- new device(300, 330, "GPS")

 flir <- new cyclicDevice(400, 440, "FLIR")

 trackFile <- new extrapolate(500, 550, "TRACKFILE")

209

Internal Draft of May 8, 2002

 15

 trigger 20 ==> gps

 trigger 1 ==> flir

 fullChannel (do dataAvail gps ==> airframe

 [airframe, flir] +=> trackFile

 dataAvail trackFile ==> disp)

We have now seen how our DSL can be used to provide high-level, readable descriptions for

each of Scenarios 1.1, 1.2, 1.6, and 1.7. It is particularly important to note that the descriptions

shown here are complete, resulting in XML configuration files that contain all the details of the

original, handwritten versions. Despite this, however, the DSL versions of these scenarios are

much more compact: a total of less than forty lines of code, compared with 1,198 lines of XML

in the corresponding files from Build 1.6.1.

Describing Scenario 1.4 using the OEP DSL

To conclude, we present a description of Scenario 1.4 from the OEP documentation using the

DSL for component configuration that we have described in this report. Scenario 1.4 is the

largest example in the current build, involving 50 different components, and described by 3,285

lines of XML. In fact, Scenario 1.4 consists of two separate subsystems—one for navigation and

one for tracking—and our top-level description captures this structure directly.

scenario14 = do processor "BM__PROCESSOR1"

 navigation

 tracking

The navigation subsystem is described by the code in Figure 3; in the OEP documentation, it was

described by a collaboration diagram, which we reproduce here in Figure 4. The first line of the

code for the navigation system uses the “via” operator in an annotation that specifies that events

within this portion of the configuration should be delivered using the Event Registration

Manager (ERM). This is an optimization that has been implemented in the Boeing OEP to avoid

the overheads of full channel delivery when event suppliers and consumers are on the same

process and in the same thread. Several other delivery modes can be specified using via; in fact

the fullChannel annotation that we used previously is just an abbreviation for via FULL_CHANNEL.

210

Internal Draft of May 8, 2002

 16

navigation = via ERM

 (do wp1 <- new passive(7100, 7110, "WAYPOINT1") -- Create 10 waypoints

 wp2 <- new passive(7200, 7210, "WAYPOINT2")

 wp3 <- new passive(7300, 7310, "WAYPOINT3")

 wp4 <- new passive(7400, 7410, "WAYPOINT4")

 wp5 <- new passive(7500, 7510, "WAYPOINT5")

 wp6 <- new passive(7600, 7610, "WAYPOINT6")

 wp7 <- new passive(7700, 7710, "WAYPOINT7")

 wp8 <- new passive(7800, 7810, "WAYPOINT8")

 wp9 <- new passive(7900, 7910, "WAYPOINT9")

 wp10 <- new passive(7101, 7111, "WAYPOINT10")

 earthModel <- new pushDatasrc(6100, 6110, "EARTH_MODEL") -- Build an earth model,

 trigger 1 ==> earthModel -- triggered once a

 earthModel <== [wp1, wp2, wp3, wp4, wp5, -- second and connected

 wp6, wp7, wp8, wp9, wp10] -- to the waypoints

 leg1 <- new lazyActive(101, 111, "LEG1") -- Create 5 legs and

 leg2 <- new lazyActive(102, 112, "LEG2") -- hook them up to

 leg3 <- new lazyActive(103, 113, "LEG3") -- the waypoints

 leg4 <- new lazyActive(104, 114, "LEG4")

 leg5 <- new lazyActive(105, 115, "LEG5")

 [wp1,wp2,wp3] +=> leg1

 [wp3,wp4,wp5] +=> leg2

 [wp5,wp6,wp7] +=> leg3

 [wp7,wp8,wp9] +=> leg4

 [wp9,wp10] +=> leg5

 route <- new openED(4700, 4710, "ROUTE") -- Feed the leg events

 [leg1,leg2,leg3,leg4,leg5] +=> route -- into a route object

 let src -=> dst = dataAvail src ==> dst -- Create remaining parts

 pipe cs = sequence_ (zipWith (-=>) cs (tail cs)) -- of navigation system

 flightPlan <- new openED(4800, 4810, "FLIGHT_PLAN")

 pilotPrefs <- new openED(4900, 4910, "PILOT_PREFS")

 waypointSteering <- new modal(9200, 9210, "WAYPOINT_STEERING")

 flightplanDisplay <- new display(3400, 3410, "FLIGHTPLAN_DISPLAY")

 pipe [route, flightPlan, waypointSteering, flightplanDisplay]

 flightPlan <== pilotPrefs -- N.B. pilotPrefs does not generate events!

 groundPoints <- new closedED(5500, 5510, "GROUND_POINTS")

 navSteering <- new modal(9100, 9110, "NAV_STEERING")

 navDisplay2 <- new display(3500, 3510, "NAV_DISPLAY2")

 pipe [route, groundPoints, navSteering, navDisplay2]

 pilotControls <- new modeSource(8100, 8110, "PILOT_CONTROLS")

 pilotControls <== [waypointSteering, navSteering]

)

Figure 3: DSL Code for the Navigation Subsystem of Scenario 1.4

211

Internal Draft of May 8, 2002

 17

Figure 4: Collaboration Diagram for the Navigation Subsystem of Scenario 1.4

The other new feature in the navigation code is the <== operator, which we use to indicate a pull-

style communication between components. In a connection of the form event c1 ==> c2, it is the

left hand component c1 that initiates communication by pushing an event to the right hand

component c2. In a connection of the form c1 <== c2, it is again the left hand component c1 that

initiates the communication, but this time by pulling data from the right hand component c2. As

such, there is no event type associated with this style of communication; the command c1 <== c2

simply defines a receptacle for c2 (which is essentially a kind of interface pointer or callback for

the component) on c1. Our DSL allows either a single component or a list of components to be

used on the right of the <== operator. The latter form is used in navigation to establish a

connection between the earthModel and the ten waypoint objects, while the former adds a

wayPoi nt1 :
BM__PassiveComponent

wayPoi nt2 :
BM__PassiveComponent

wayPoint10 :
BM __Pass iveComponent

navSteering :
BM__ModalComponent

flightPlanDisplay :
BM__DisplayComponent

flightPlan :
BM__OpenEDComponent

navDisplay2:
BM__Displ ayComponent

route : BM__OpenEDComponent

leg1: BM__LazyActiveComponent

wayPoint4 :
BM__PassiveComponent

wayPoint5 :
BM__PassiveComponent

wayPoint6 :
BM__PassiveComponent

wayPoint8 :
BM__Pass iveComponent

wayPoint9 :
BM__PassiveComponent

wayPoint3 :
BM __Pass iveComponent

wayPoi nt7 :
BM__PassiveComponent

leg4: BM__LazyActiveComponent leg5: BM __LazyActiveComponentleg2: BM__LazyActiveComponentleg3: BM__LazyActiveComponent

earthModel :
BM__PushDataSourceComponent

groundPoints :
BM__ClosedEDComponent

1Hz ti me trigger

1Hz time trigger

data s et to eac h of the
waypoints

pilotControls :
BM__ModeSourceComponent

wayPointSteering :
BM__ModalComponent

pilotPrefs :
BM__OpenEDComponent

The rest of the Push and Gets between the earthModel,
wayPoints and legs are understood, but not shown to reduce
diagram clutter.

ERM
Events

8. ChangeMode()

10. ChangeMode()

14. Push()

15. Get()

9. Get()

13. Push()
19. Push()

20. Get()

16. Push()

17. Get()

7. Get()6. Get()

5. Get()

2. Push()

4. Get()

3. Push()

1. SetData()

11. Push()
12. Get()

21. Push()

22. Get()

18. Get()

212

Internal Draft of May 8, 2002

 18

receptacle for pilotPrefs to flightPlan. In fact, in studying the XML description of this scenario

in Build 1.6.1, we discovered that pilotPrefs was, in addition declared as an event supplier, even

though there were no consumers for its events. This does not change the functional behavior of

the system at runtime, but it does incur an unnecessary overhead in generating and subsequently

discarding the redundant events. The constructs in our DSL, by contrast, do not allow us to

configure a component as an event supplier without an associated event consumer.

A careful look at the code for navigation reveals that approximately half of the lines in the

definition are required simply to construct the 25 components in this subsystem; this was

necessary to ensure that we used the same component and group id codes that are used in the

XML description of Scenario 1.4 in Build 1.6.1. In future versions of our DSL, we will allow

these id codes to be generated automatically, and provide a multiNew operator for constructing a

list of components in a single command. This will allow us to reduce the first 26 lines in the

definition of navigation to the following code:

 wps <- multiNew passive[1..10]("WAYPOINT")

 earthModel <- new pushDatasrc("EARTH_MODEL")

 trigger 1 ==> earthModel

 earthModel <== wps

 legs <- multiNew lazyActive[1..5](“LEG”)

 let wpSets = takeWhile (not.null) (map (take 3) (iterate (drop 2) wps))

 mapM_ (zipWith (+=>) wpSets legs)

 route <- new openED("ROUTE")

 legs +=> route

More important than the reduction in code size, however, it is easier to modify this revised

version of the code to accommodate a different numbers of waypoint and leg objects; we need

only change the constants (or even replace them with parameters), and would not need to change

the overall structure of the code by adding new declarations or commands.

The remaining portion—the tracking subsystem—for our description of Scenario 1.4 is shown in

Figure 5, with the corresponding collaboration diagram from the OEP documentation reproduced

in Figure 6. The only new DSL feature here is the correlate annotation, which is used to specify

that the event consumer will only receive an event when all of the event suppliers have fired.

213

Internal Draft of May 8, 2002

 19

tracking = via FULL_CHANNEL

 (do gps <- new device(200, 220, "GPS") -- Create some devices,

 ins <- new device(300, 330, "INS") -- triggered at 20 Hz

 adc <- new device(400, 440, "ADC")

 radar1 <- new device(500, 550, "RADAR1")

 radar2 <- new device(1000, 1100, "RADAR2")

 ts1 <- new device(600, 660, "TRACKSENSOR1")

 ts2 <- new device(700, 770, "TRACKSENSOR2")

 ts3 <- new device(800, 880, "TRACKSENSOR3")

 ts4 <- new device(900, 990, "TRACKSENSOR4")

 trigger 20 ==< [gps, ins, adc, radar1, radar2, ts1, ts2, ts3, ts4]

 airframe <- new lazyActive(100, 110, "AIRFRAME") -- Create an airframe

 [gps, ins, adc, radar1] +=> airframe # correlate

 track1 <- new openED(4200, 4210, "TRACK1") -- Create a collection

 track2 <- new openED(4300, 4310, "TRACK2") -- of track objects

 track3 <- new openED(4400, 4410, "TRACK3")

 track4 <- new openED(4500, 4510, "TRACK4")

 track5 <- new closedED(5000, 5010, "TRACK5")

 track6 <- new openED(4600, 4610, "TRACK6")

 track7 <- new closedED(5100, 5110, "TRACK7")

 track8 <- new closedED(5200, 5210, "TRACK8")

 track9 <- new closedED(5300, 5310, "TRACK9")

 track10 <- new closedED(5400, 5410, "TRACK10")

 [ts1, ts2, ts3] +=> track1 # correlate -- The track sensors trigger

 [ts1, ts2] +=> track2 # correlate -- the track objects in

 [ts1] +=> track3 -- curious ways

 [ts2] +=> track4

 [ts3] +=> track5

 [ts4] +=> track6

 [ts1, ts2] +=> track7 # correlate

 [ts3, ts4] +=> track8 # correlate

 [ts4] +=> track9

 [ts4] +=> track10

 -- Tactical steering takes (collated) input from various sensors:

 tacticalsteering <- new openED(4000, 4010, "TACTICALSTEERING")

 [airframe, track1, track2, track3, track4, track5,

 track6, track7, track8, track9, track10, radar2] +=> tacticalsteering # correlate

 hud <- new display(3100, 3110, "HUD") -- add and connect displays

 tacticaldisplay1 <- new display(3200, 3210, "TACTICALDISPLAY1")

 tacticaldisplay2 <- new display(3300, 3310, "TACTICALDISPLAY2")

 navDisplay <- new display(3000, 3010, "NAV_DISPLAY")

 dataAvail airframe ==> navDisplay

 dataAvail tacticalsteering ==< [hud, tacticaldisplay1, tacticaldisplay2]

)

Figure 5: DSL Code for the Tracking Subsystem of Scenario 1.4

214

Internal Draft of May 8, 2002

 20

navDisplay:
BM__DisplayComponent

adc: BM__DeviceComponent

ins: BM__DeviceComponent

tacticalDisplay1:
BM__DisplayComponent

trackSensor1 :
BM__DeviceComponent

trackSensor2 :
BM__DeviceComponent

trac kSensor3 :
BM__DeviceComponent

trackSensor4 :
BM__D evi ceC omponent

Events
Correlated

tacticalDisplay2: :
BM__DisplayComponent

hud : BM__DisplayComponent
radar1 :

BM__DeviceComponent

Component time
triggered at 20H z

tact icalSteeri ng :
BM__OpenEDComponent

track1 : BM__OpenEDComponent

track2 : BM__OpenEDComponent

track10 :
BM__ClosedEDComponent

track3 : BM__OpenEDComponent

track4 : BM__OpenEDComponent

track5 : BM__ClosedEDComponent

track6 : BM__OpenEDComponent

track8 : BM __Cl osedEDComponent

tr ack9 : BM __ClosedED Component

track7 : BM__ClosedEDComponent

radar2 :
BM__DeviceComponent

airframe:
BM__LazyActiveComponent

9. Update()

7. Update()

72. Update()

75. Update()

78. Update()

Events
Correlated

Medium Size , Sing...

g ps: BM__DeviceComponent

Component time
triggered at 20Hz

Events
Correlated

Full Channel
Events

1. Push()

12. Get()

3. Push()

13. Get()

2. Push()

11. Get()

14. Push()

18. Get()15. Push()

19. Get()

16. Push()

20. Get()

17. Push()

21. Get()

22. Pus h()

26. Get()

23. Push() 27. Get()

24. Push()

28. Get()
25. Push()

29. Get()

30. Push()

34. Get()

33. Push()

37. Get()

31. Push() 35. Get()

32. Push()

36. Get()

38. Push()

43. Get()

39. Push()

44. Get()

47. Get()

42. Push()

40. Push() 45. Get()

41. Push()

46. Get()

4. Push()
10. Get()

74. Push()
76. Get()

77. Push()

79. Get()

70. Get()

6. Push()

71. Push()

73. Get()

52. Push()

53. Get()

66. Push()

67. Get()

64. Push()

65. Get()

62. Push()
63. Get()

60. Push()

61. Get()

58. Push()

59. Get()

56. Push()

57. Get()

54. Push()

55. Get()

48. Pus h()

49. Get()

50. Push()

51. Get()

68. Push()

69. Get()

5. Push()

8. Get()

Figure 6: Collaboration Diagram for the Tracking Subsystem of Scenario 1.4

Conclusions

This report represents the beginning of an effort to explore the potential for using a domain

specific language to simplify and support the construction of component configurations in the

Boeing OEP, increasing the productivity of users while also reducing the potential for bugs. Our

current prototype provides high-level constructs that allow configurations to be described in a

215

Internal Draft of May 8, 2002

 21

readable and compact notation, with significant opportunities for abstraction, modularity, and

reuse. As a demonstration of feasibility, we have shown that our DSL can comfortably describe

the largest example in the current OEP Build in less than 1/25th of the number of lines of code in

the original XML version.

Of course, there is still a lot of work to be done, and we fully expect that we will need to make

changes—from adjustments in syntax to more substantive modifications in key abstractions—as

we learn more about the domain and the needs of users through our interactions with the OEP

developers at Boeing. That said, the examples presented here show that our approach has much

to offer, and we hope that it will soon be possible to exploit this work by using our DSL to

describe, construct, and test some of the more complex scenarios that are planned for future OEP

releases.

216

APPENDIX M

A Domain Specific Language for Component Configuration: Preliminary User Notes. Mark P.

Jones. Documentation distributed with releases of the DSL software. Summer 2003.

217

A Domain Specific Language for Component
Configuration: Preliminary User Notes

Mark P. Jones
Department of Computer Science & Engineering
OGI School of Science & Engineering at OHSU

Beaverton, Oregon 97006

1 Introduction

This note describes the current status, from a user perspective, of the domain
specific language (DSL) that we have built for component configuration in
the Boeing Open Experimental Platform (OEP). The purpose of the DSL
is to make it easier for system integrators to construct and validate con-
figurations from concise, modular, and reusable high-level descriptions. The
design of the DSL reflects common patterns, terminology, and notations used
in the specific domain, which in this case have to do with initializing software
components, and establishing connections between them. By providing di-
rect support for domain specific idioms, a DSL empowers its users to express
their ideas quickly and concisely, to work more productively, to avoid certain
kinds of coding error, and to tackle more complex problems than might oth-
erwise be possible. The DSL that we describe here, for instance, has been
used to produce a clear and modular description of the largest example in the
current OEP build that is approximately 30 times smaller than the original
description written in XML.

We assume that the reader is already familiar with the Boeing OEP and
with the goals of our DSL in that specific context. Further information on
these topics may be found elsewhere [1]. The OEP’s native XML format for
describing configurations is described in the Configuration Interface docu-
mentation [3].

1

218

2 An Overview of DSL Syntax and Notation

The DSL uses a textual notation that is designed to provide a close cor-
respondence with the diagrams and the text used in the product scenario
documentation [2]. We will introduce the notation using a small but com-
plete example (Scenario 1.1, to be specific), whose text is as follows:

import OEP

example = do processor "BM__PROCESSOR1"

airframe <- new closedEDComp("AIRFRAME")

gps <- new deviceComp("GPS")

navDisplay <- new displayComp("NAV_DISPLAY")

trigger 20 gps

gps <=> airframe

airframe <=> navDisplay

In the interests of being concrete, we will assume that this program has been
stored in a plain text file called example.hs in the same directory as the
OEP.hs file from the DSL distribution. Note that the interpreter is a bit
fussy about layout, so it is important to get the indentation right here. In
particular, each of the commands following the do keyword should begin in
the same column. Commands may be broken over multiple lines as necessary,
providing that all of the continuation lines are indented more than the first
line of the command. On the other hand, the only reason for lining up the
arrows, <-, was to make the code look“prettier.” In practice, you don’t need
to align them like this unless you want to!

Every DSL program begins with the line import OEP, which initializes the
system by loading the libraries that define the commands of the DSL. The
rest of each DSL program is a sequence of definitions, each of which takes
the form:

scenarioName = do command_1

command_2

...

command_n

2

219

The main types of command that can be used are described in Section 2.1.
Where needed, additional details and attributes are specified using simple
annotations, each beginning with a single # character, The different forms of
annotation are described in Section 2.2. The more esoteric commands having
to do with concurrency and distribution are described in Section 2.3. Finally,
Section 2.4 discusses a larger example that illustrates how these features are
used together to build up complete descriptions of interesting configurations.

2.1 DSL Commands

This section provides a brief summary of each of the different kinds of com-
mand that can be used in a DSL description of a configuration.

2.1.1 Processor Name

A processor "NAME" command specifies the name of the processor that
will host the components defined in subsequent commands (up to the next
processor command). Every DSL program begins with a processor com-
mand. A configuration with multiple processors uses multiple processor

commands, as in:

name = do processor "BM__PROCESSOR1"

...definition of components on processor 1...

...connections between components on processor 1...

processor "BM__PROCESSOR2"

...definition of components on processor 2...

...connections between components on processor 2...

...connections between components

on processor 1 and processor 2...

2.1.2 Component Construction

A command of the form comp <- new componentType("NAME") defines a
new component of the specified componentType with label "NAME". In sub-

3

220

DSL name Name in Avionics OEP
closedEDComp BM__CLOSED_ED_COMPONENT

deviceComp BM__DEVICE_COMPONENT

displayComp BM__DISPLAY_COMPONENT

lazyActiveComp BM__LAZY_ACTIVE_COMPONENT

modalSourceComp BM__MODE_SOURCE_COMPONENT

modalComp BM__MODAL_COMPONENT

pushDatasrcComp BM__PUSH_DATASRC_COMPONENT

passiveComp BM__PASSIVE_COMPONENT

openEDComp BM__OPEN_ED_COMPONENT

pushPullComp BM__PUSH_PULL_COMPONENT

prioritizedEventComp BM1__PRIORITIZED_EVENT_COMPONENT

cyclicDeviceComp BM1__CYCLIC_DEVICE_COMPONENT

extrapolateComp BM1__EXTRAPOLATE_COMPONENT

displaySurfaceComp OM1__DISPLAY_SURFACE_COMPONENT

formatComp OM1__FORMAT_COMPONENT

weaponDeliveryComp OM1__WEAPON_DELIVERY_COMPONENT

dataGatheringComp BM1__DATA_GATHERING_COMPONENT

waypointsComp RM1__WAYPOINTS_COMPONENT

tracksComp RM1__TRACKS_COMPONENT

routesComp RM1__ROUTES_COMPONENT

routeComp RM1__ROUTE_COMPONENT

pathComp RM1__PATH_COMPONENT

userInputComp BM__USER_INPUT_COMPONENT

Figure 1: Component types used in the OEP DSL

sequent commands the component should be referred to by the name comp.
The list of component types supported in the current version of the OEP DSL
is shown in Figure 1, together with the corresponding names that are used
in the generated XML files, In the current implementation, these component
types are predefined as part of the DSL library, which makes them easy to
use, but also makes it harder to add support for new types of component.
We expect to address this in a future version of the DSL.

Components can be defined in any order, and component definitions can be
interleaved with other commands. The only restriction is that every compo-

4

221

nent should be defined before it is used. For example, the commands from
the example at the beginning of Section 2 can be reordered as follows without
changing the configuration that is described.

gps <- new deviceComp("GPS")

trigger 20 gps

airframe <- new closedEDComp("AIRFRAME")

gps <=> airframe

navDisplay <- new displayComp("NAV_DISPLAY")

airframe <=> navDisplay

Note that the DSL does not check for cases where two or more component
definitions specify the same NAME, but this could easily be supported in a
future version of the DSL.

2.1.3 Triggers and Timeouts

A command of the form trigger freq comp specifies that the comp com-
ponent should be triggered at a frequency of freq Hz. (The freq value is
typically 1, 5, 10, 20, or 40.) In the earlier example, for instance, the gps

component is triggered at 20Hz. This corresponds to the INTERVAL_TIMEOUT
tag that is used in the XML, except that it uses a frequency instead of a time
interval. In fact there are several variations on this including:

• trigger freq [comp_1, ..., comp_n]

Triggers each of the specified components at the given frequency. This
is just a shorthand for:

trigger freq comp_1

...

trigger freq comp_n

• timeout interval comp

timeout interval [comp_1, ..., comp_n]

5

222

These work just like the corresponding trigger commands, except that
they use a time interval (in microseconds) instead of a frequency (in
hertz).

These examples illustrate a syntax that is used throughout the DSL to denote
a list of items: enclosing (square) brackets that delimit a comma separated
sequence of values (in most cases, these are component names).

2.1.4 Connecting Components

There are three basic command forms that can be used to describe how
components should be connected together:

• comp ==> comp creates a “push” connection from l to r. It indicates
that l can generate data available events, and that these should be
passed on to r.

• comp <=> comp creates a “push/pull” connection between l and r. It
indicates that l can send a data available event to r, and that r will
have a receptacle so that it can call back to get data from l.

• comp <== comp creates a “pull” connection between l and r. It indi-
cates that l has a receptacle that it can use to get data from r.

Once you know the intuitions here, these notations should become quite easy
to read (and remember). In each case:

• The left component is (typically) the one that initiates a communica-
tion, either by sending an event or by using a get state call.

• The arrow heads indicate the direction of data flow.

The push and push/pull commands all assume the common (hence default)
case of a data available event type. It also possible to specify a different
event type using the following variants:

event n comp ==> comp

event n comp <=> comp

6

223

In each case, n is an event type number. (Data available is event type
1000000, for example.) We have added extra space here between the n and
the first comp, but this is for clarity only, and is not required.

If the same event type is used multiple times, then it may be more convenient
to define an abbreviation so that the number n does not need to be repeated.
This can be done with a command of the form:

let myEvent = event 1000001

and then in subsequent commands, you can write commands like:

myEvent comp ==> comp

myEvent comp <=> comp

You can also define a new event at the top level of a DSL program but the
let keyword should be omitted in this case. For example, the OEP includes
the following definition for the data available event:

dataAvail = event 1000000

This means that you can use dataAvail as an event name in DSL code, if
you wish, without having to define it yourself. The following two commands,
for example, are equivalent:

gps <=> airframe

dataAvail gps <=> airframe

There are also variants of ==> and <=> for communications with multiple
senders (using the general notation for lists mentioned previously):

[comp_1, ..., comp_m] ==> comp

[event n_1 comp_1, ..., event n_m comp_m] ==> comp

[ev_1 comp_1, ..., ev_m comp_m] ==>

The first of these is used when there are multiple suppliers of data available
events, while the second and third forms are used when the suppliers provide
different event types. There are similar command forms for <=>, of course.

Finally, we can use a toEach command to specify multiple connections with
the same supplier or set of suppliers. For example:

7

224

toEach (comp ==>) [comp_1, ..., comp_n]

is a shorthand for the following sequence of commands:

comp ==> comp_1

...

comp ==> comp_n

The toEach construct can also be used with the <=> or <== connectors in
place of ==>, and with multiple suppliers and/or different types of event
suppliers, by reusing the notation shown above. For example, the following
command specifies a push/pull communication between tacticalsteering

and each of the three components on the right hand side.

toEach (tacticalsteering<=>)

[hud, tacticaldisplay1, tacticaldisplay2]

2.2 DSL Annotations

Special properties of components are described by annotations. In the sim-
plest case, an annotation is written after a command, with a single # character
between the command and the annotation, as in:

command # annotation

It is also possible to provide multiple annotations, as in:

command # annotation_1

annotation_2

Note that the DSL syntax for annotations is quite specific, and you should
not use an annotation to attach an arbitrary textual comment to part of a
DSL program. In the DSL, a single line textual comment begins with the
two characters -- and extends to the end of that line.

command -- comment

annotation -- text comment

another annotation -- more comment

8

225

Several different forms of annotation are supported:

• A correl annotation is used to indicate that events should be corre-
lated. For example, the command:

[gps, ins, adc, radar1] <=> airframe # correl

describes a push/pull communication from the four components on the
left whose data available events will be correlated before the airframe

component on the right receives them. If correl is not specified then
a default of uncorrelated is assumed.

• The ERM_EVENT and FULL_EVENT annotations correspond to the differ-
ent methods of sending events (via ERM, or through the full event
channel, respectively), as in:

[gps, ins, adc, radar1] <=> airframe # FULL_EVENT

• An internalLock n or externalLock n annotation should be added
to the definition of a component to specify the type of locking that is
required, as in the following example:

routes <- new pushPullComp("ROUTES") # externalLock 2

The default, if no explicit locking annotation is given, is equivalent to
internalLock 2.

• Persistence attributes of a component can be set using an annotation
of the form:

persistent{regionID=r, saveMethodType=s,

classified=c, trackDirtyness=t,

savePolicy=sp, doubleBuffered=d}

Any or all of the six fields can be omitted, in which case the defaults
shown in the following annotation will be used:

persistent{regionID=1, saveMethodType=1,

classified=0, trackDirtyness=0,

savePolicy=FilterTime 0, doubleBuffered=0}

9

226

If no persistent annotation is specified, then the component will not
have any persistence properties. To specify a component with the de-
fault persistence properties shown above, you can just use the persistent
annotation by itself without any modifiers, as in:

steering <- new closedEDComp("STEERING") # persistent

To specify persistence properties but override one or more of the de-
faults shown above, simply list the desired bindings (in any order)
between braces, as in the following example:

comp <- new compType("NAME") # persistent{classified=1}

• Internal attributes can be specified using annotations, as in the follow-
ing example:

hudFormat <- new formatComp("HUD_FORMAT")

internal [Item "FORMAT_ID" "1",

Item "START_TIME" "1",

Item "INTERVAL" "3"]

These internal annotations correspond to a relatively new feature in
the OEP, and we expect the notation to evolve as both the OEP and
the DSL mature. In particular, the need for such annotations may one
day be avoided by folding appropriate, type-specific alternatives into
the syntax for constructing new components.

• An updateRate f annotation specifies an update rate for a communi-
cation or a master-proxy relationship. The f parameter is the required
frequency in hertz (typical values are 1Hz, 5Hz, 10Hz, 20Hz, and 40Hz,
but any integer frequency can be specified).

• There are also static, dynamic, and distWrite annotations, but these
are only useful with the proxy command, and so will be described in
Section 2.3.

10

227

Sometimes it is useful to apply an annotation to a group of commands. The
DSL provides a with construct to support this in examples like the following:

with annotation

(do command_1

...

command_n)

This is almost equivalent to:

command_1 # annotation

...

command_n # annotation

(The only exception is that, in the first version, the names of any compo-
nents that are defined in any one of the commands are local to that list of
commands, and cannot be referenced outside of the block.)

The following fragment from Scenario 1.2 illustrates how with is used in
practice, here describing a pipelined sequence of connections between four
components, with all events passed via the full event channel implementation:

with FULL_EVENT

$ do gps <=> airframe

cursorDevice <=> selectedPoint

airframe <=> navDisplay

selectedPoint <=> tacticalDisplay

This example also illustrates a minor variant in syntax that you may see in
some of the DSL code generated by the xml2dsl tool: instead of enclosing
the whole do command_1 ... command_n block in parentheses, you can just
insert a single $ sign is in front of the do keyword. DSL users are free to use
either parentheses or $, as they prefer!

2.3 Commands for Concurrency and Distribution

This section describes advanced DSL commands that were not discussed in
Section 2.1. These are needed to describe some of the more esoteric features
of certain configurations having to do with concurrency and distribution.

11

228

• A synchProxyGroup command is used to specify the components in
a synchronous proxy group, together with a unique identifier for the
group itself. The following example shows an example of such a com-
mand (taken from the DSL code for Scenario 1.5):

synchProxyGroup airframe "AIRFRAME_SmartPointer"

[(airframeSynchproxy40hz,0), (airframeSynchproxy20hz,1),

(airframeSynchproxy10hz,2), (airframeSynchproxy5hz,3),

(airframeSynchproxy1hz,4)]

The name "AIRFRAME_SmartPointer" specifies the identifier that will
be used for this group. A synchProxyGroup command should only be
used after all of the individual components involved have been defined
(i.e., in this case, after the definitions of the main airframe compo-
nent as well as each of the proxies airframeSynchProxy40hz, . . .).
Note that this command also specifies an integer code giving the up-
date rate for each proxy. These codes use the values specified in the
documentation for the OEP configuration interface [3, Section 2.6.10]
instead of raw frequency values.

• A sharedLock comp [comp_1, ... comp_n] command is used to in-
dicate that each of the listed components comp_1, . . . , comp_n should
share the lock of the named master component comp. For example, the
following command is used to specify a shared lock in the DSL code
for Scenario 2.1:

sharedLock routes [route0, route1, path]

• Last but not least, a proxy comp compProxy command is used to spec-
ify a master-proxy relationship between a component, comp, and a cor-
responding proxy, compProxy. This is used in multi-processor scenarios
where the master and proxy are located on different processors. It is
possible to have multiple proxies for a single master in which case the
second argument of the proxy command should be a list, as in the
following example from Scenario 4.1:

proxy airframe [airframeProxy, airframeProxy3]

12

229

Here, airframe is a master component on processor 1, airframeProxy
is a proxy on processor 2, and airframeProxy3 is another proxy, this
time on processor 3.

Additional details about a master-proxy relationship can be specified
using annotations on the proxy command. For example, a dynamic

annotation should be used to specify where dynamic replication is re-
quired. (Alternatively, a static annotation can be used to specify
static replication, but this is the default so it does not normally need
to be spelled out explicitly.) In a similar way, the distWrite anno-
tation should be used to specify when distributed writes are required.
(Once again, the alternative, noDistWrite, is the default and does not
usually need to be specified explicitly.) Finally, the updateRate f an-
notation, previously described in Section 2.2, can also be used on a
proxy command to specify the update frequency for proxies. For ex-
ample, the following command is used in the DSL code for Scenario 3.2
to specify a master-proxy relationship with distributed writes and an
update rate of 1Hz:

proxy waypoint waypointProxy # distWrite

updateRate 1

We encourage the reader to study the examples of DSL code in the distribu-
tion, particularly for the 3.x and 4.x scenarios, to see how these features are
used in practice.

2.4 A Larger Example

One of the important features of the DSL is the support that it provides
for breaking large, complex configurations into smaller, independent com-
ponents. This enhances modularity and reuse, makes larger configurations
easier to understand, and facilitates the construction of large configurations
by a team of developers. This is essential in practice because it is unrealistic
to expect that larger scenarios will always be produced by a lone developer.

With that in mind, this section presents the complete DSL code for Scenario
1.4 in the OEP product scenarios [2], whose overall structure is depicted
in the diagram in Figure 2. It is clear from the figure that this particular

13

230

Figure 2: Graphical View of Scenario 1.4

configuration splits neatly into two separate pieces, one for tracking and
one for navigation. This is an important property of the system that is not
captured in the native XML format that is used to describe the configuration.
Instead, the XML code merges the two subsystems into a monolithic chunk of
data that arranges components according to type rather than functionality.

By contrast, the DSL allows Scenario 1.4 to be expressed naturally as a
combination of the two subsystems. More specifically, we can create a DSL
description for this scenario with a program that begins as follows:

import OEP

scenario14 = do processor "BM__PROCESSOR1"

tracking # FULL_EVENT

navigation # ERM_EVENT

14

231

The names tracking and navigation used here are placeholders for sections
of DSL code that could be written by different developers1. As it happens, all
of the components in the tracking system use ERM for event delivery, while
all of the components in the navigation system use the full event channel.
This is another property of the configuration that is hard to see from the XML
code, but is captured elegantly here by attaching an appropriate annotation
to each of the subsystems.

Now our task is to provide DSL code for each of the subsystems. Starting with
the tracking system at the top of Figure 2, we can see a small, intricately
wired network of track sensor and track components, which we can describe
as a separate unit using the following code:

makeTracks

= do tracksensor1 <- new deviceComp("TRACKSENSOR1")

tracksensor2 <- new deviceComp("TRACKSENSOR2")

tracksensor3 <- new deviceComp("TRACKSENSOR3")

tracksensor4 <- new deviceComp("TRACKSENSOR4")

trigger 20 [tracksensor1, tracksensor2,

tracksensor3, tracksensor4]

track1 <- new openEDComp("TRACK1")

track2 <- new openEDComp("TRACK2")

track3 <- new openEDComp("TRACK3")

track4 <- new openEDComp("TRACK4")

track6 <- new openEDComp("TRACK6")

track5 <- new closedEDComp("TRACK5")

track7 <- new closedEDComp("TRACK7")

track8 <- new closedEDComp("TRACK8")

track9 <- new closedEDComp("TRACK9")

track10 <- new closedEDComp("TRACK10")

[tracksensor1, tracksensor2, tracksensor3] <=> track1

correl

toEach ([tracksensor1, tracksensor2]<=>) [track2, track7]

correl

1The definitions for these two subsystems would, in practice, be imported from separate
source files, but we do not illustrate that here.

15

232

tracksensor1 <=> track3

tracksensor2 <=> track4

toEach (tracksensor4<=>) [track6, track9, track10]

tracksensor3 <=> track5

[tracksensor3, tracksensor4] <=> track8 # correl

return [track1,track2,track3,track4,track5,

track6,track7,track8,track9,track10]

Although it is fairly long, this code is fairly easy to understand. First we
create 4 track sensor objects and arrange for each of them to be triggered at
20Hz. Then we create 10 track objects and wire them to the sensors, using
event correlation where needed, in the configuration shown in the diagram.
The final result from this section of code is a list of the ten track objects,
which is returned by the last line of code.

Now we can describe the construction and connections between the remaining
components to complete the description of the tracking system.

tracking

= do gps <- new deviceComp("GPS")

ins <- new deviceComp("INS")

adc <- new deviceComp("ADC")

radar1 <- new deviceComp("RADAR1")

radar2 <- new deviceComp("RADAR2")

trigger 20 [gps, ins, adc, radar1, radar2]

airframe <- new lazyActiveComp("AIRFRAME")

[gps, ins, adc, radar1] <=> airframe # correl

navDisplay <- new displayComp("NAV_DISPLAY")

airframe <=> navDisplay

hud <- new displayComp("HUD")

tacticaldisplay1 <- new displayComp("TACTICALDISPLAY1")

tacticaldisplay2 <- new displayComp("TACTICALDISPLAY2")

tacticalsteering <- new openEDComp("TACTICALSTEERING")

toEach (tacticalsteering<=>)

[hud, tacticaldisplay1, tacticaldisplay2]

16

233

tracks <- makeTracks

([airframe, radar2]++tracks) <=> tacticalsteering

correl

This code is also fairly straightforward, with the components being intro-
duced and connected in the order that they appear as we move down the
figure. The only unusual feature here are in the last two commands. First,
tracks <- makeTracks executes the makeTracks code described previously,
using the variable tracks to record the list of track objects that it returns. Fi-
nally, the last line uses those tracks, together with events from the airframe

and radar2 components, to provide the trigger for tacticalSteering. (The
symbol ++ used here denotes list concatenation.)

That completes our description of tracking . . . but we still have work to
do. In particular, we must now provide a description for the navigation

subsystem. Again motivated by the layout of the components in Figure 2,
we will describe this in two pieces, the first of which describes the routing
subsystem from the route component upwards2:

routeSubsystem

= do earthModel <- new pushDatasrcComp("EARTH_MODEL")

trigger 1 earthModel

waypoint1 <- new passiveComp("WAYPOINT1")

waypoint2 <- new passiveComp("WAYPOINT2")

waypoint3 <- new passiveComp("WAYPOINT3")

waypoint4 <- new passiveComp("WAYPOINT4")

waypoint5 <- new passiveComp("WAYPOINT5")

waypoint6 <- new passiveComp("WAYPOINT6")

waypoint7 <- new passiveComp("WAYPOINT7")

waypoint8 <- new passiveComp("WAYPOINT8")

waypoint9 <- new passiveComp("WAYPOINT9")

waypoint10 <- new passiveComp("WAYPOINT10")

2Diagrams are a useful guide, but they do not necessarily contain all of the information
that is needed to complete the definition of a configuration. From time to time, additional
details must be obtained from the original product scenario descriptions [2] or by consulting
a domain expert.

17

234

[waypoint1, waypoint2, waypoint3,

waypoint4, waypoint5, waypoint6,

waypoint7, waypoint8, waypoint9,

waypoint10] <== earthModel

leg1 <- new lazyActiveComp("LEG1")

leg2 <- new lazyActiveComp("LEG2")

leg3 <- new lazyActiveComp("LEG3")

leg4 <- new lazyActiveComp("LEG4")

leg5 <- new lazyActiveComp("LEG5")

[waypoint1, waypoint2, waypoint3] <=> leg1

[waypoint3, waypoint4, waypoint5] <=> leg2

[waypoint5, waypoint6, waypoint7] <=> leg3

[waypoint7, waypoint8, waypoint9] <=> leg4

[waypoint9, waypoint10] <=> leg5

route <- new openEDComp("ROUTE")

[leg1, leg2, leg3, leg4, leg5] <=> route

return route

The second subsystem describes the portion of the diagram below the route

component. However, we do not want to repeat the construction of the route
component, and so we arrange for it to be provided here as a parameter3.
Other than that, the rest of the code should now be very easy to follow:

steeringSubsystem route

= do flightPlan <- new openEDComp("FLIGHT_PLAN")

groundPoints <- new closedEDComp("GROUND_POINTS")

toEach (route<=>) [flightPlan, groundPoints]

waypointSteering <- new modalComp("WAYPOINT_STEERING")

flightplanDisplay <- new displayComp("FLIGHTPLAN_DISPLAY")

flightPlan <=> waypointSteering

waypointSteering <=> flightplanDisplay

3All definitions can be parameterized in the manner shown here by adding the names
of the parameters on the left-hand side of the = symbol.

18

235

navSteering <- new modalComp("NAV_STEERING")

navDisplay2 <- new displayComp("NAV_DISPLAY2")

groundPoints <=> navSteering

navSteering <=> navDisplay2

pilotPrefs <- new openEDComp("PILOT_PREFS")

pilotControls <- new modalSourceComp("PILOT_CONTROLS")

trigger 1 pilotControls

[navSteering, waypointSteering] <== pilotControls

pilotPrefs <== flightPlan

This completes our description of Scenario 1.4 using the DSL. In total, our
code spans 121 lines, including some blank likes that have been included only
to make the code easier to read. In fact the code would have been shorter still
if we had not opted to break it into small subsystems. However, the overhead
for doing that is modest in comparison to the potential benefits that it offers
for increased modularity and reuse. For comparison, the XML description of
the same configuration in the OEP build is 2,675 lines of code. By running the
DSL code above, we can generate an alternative, but equivalent XML file with
a tighter layout. Event then, however, the resulting XML spans over 1,081
lines, so the DSL code is still about an order of magnitude smaller. Generally
speaking, our experience suggests that the ratio between lines of DSL code
and lines of XML improves even further as the size of the scenario increases.
In the case of Scenario 4.1, the biggest example in the current distribution,
the DSL code is approximately 30 times smaller than the original XML.

2.5 Key Points

The specific details of what we did in Section 2.4 are not particularly im-
portant: our purpose is only to show the potential for decomposing the
description of a large system into smaller, more easily digestible pieces. The
choice of decomposition is in the hands of the developer, and can be made
to suit the needs of a team and to reflect domain specific insights. Note
also that the tracking and makeTracks code could be written by different
developers. The only thing they need to agree on is the interface between
the components (in this case, the fact that makeTracks will return a list of

19

236

track objects). Once the interface has been fixed, the two developers are free
to work independently. For example, if the design team decides to change
the number of track sensors, the number of tracks, or the wiring between
them, only the code for makeTracks needs to be modified. Moreover, if the
developers anticipate that the set of components described by makeTracks

is likely to be useful in other configurations, then they can easily move its
code into a library that can be shared with other project teams.

To further emphasize some of these points, we will now show how the pieces
of code used to describe Scenario 1.4 can be reused to build variations on
this configuration:

example1 -- only the tracking subsystem

= do processor "BM__PROCESSOR1"

with FULL_EVENT tracking

example2 -- only the navigation subsystem

= do processor "BM__PROCESSOR1"

with ERM_EVENT navigation

example3 -- using the event channel for both

= do processor "BM__PROCESSOR1" -- subsystems

with ERM_EVENT (do navigation

tracking)

example4 -- a distributed version placing the

= do processor "BM__PROCESSOR1" -- two subsystems on

with ERM_EVENT navigation -- distinct processors ...

processor "BM__PROCESSOR2"

with FULL_EVENT tracking

Note that each of these examples defines a complete configuration by assem-
bling pieces of the original configuration in slightly different ways.

20

237

3 Loading and Executing DSL Programs

So now you have a complete DSL program stored in a file like the example.hs
file mentioned above. What can you do with it? First of all, you’ll need to
make sure that it has access to the OEP DSL implementation in OEP.hs, and
the easiest way to do that is to put it in the same directory as OEP.hs. (There
are other/better ways to do this by making an appropriate path setting, but
the details for doing this are likely to change rapidly as the tools mature so
placing things in the same directory is an acceptable workaround for the time
being.)

Now you can load the DSL example by double clicking on the example.hs

file. Assuming there are no errors in the DSL code, you will soon be presented
with a prompt, probably something like the following:

Main>

At this point, there are just a few commands that you might try:

• writeXML "filename.xml" scenario: The scenario argument should
be replaced by the name of the sequence of commands that describe
your configuration (such as example, example1, etc., if you are using
the DSL code described in Section 2.4). This this dumps the XML for
the specified scenario into the file called filename.xml. Take care,
because this command will overwrite any existing file with the same
name, without pausing for confirmation.

• showMe scenario: This will print the XML version of the specified
scenario on the console. This is often quite a lot of text, and hence
may only be useful for small examples; in most cases, the writeXML

command mentioned previously will be more suitable.

• writeDot "filename.dot" [] scenario: This will generate a de-
scription of the communication dependency graph in a format that
can be fed to the DOT tool for visualization. (The empty list [] used
here can be replaced with a list of hints to the layout algorithms used
in DOT.)

Further guidance on the use of the DSL is provided in the index.html file
that is included in the current distribution.

21

238

References

[1] Mark P. Jones. A Domain Specific Language for Component
Configuration. Technical Report 02-016, OGI School of Science &
Engineering, Oregon Health & Science University, November 2000.

[2] Wendy Roll. Product Scenarios Description Document for the Weapon
System Open Experimental Platform, Version 2.4. The Boeing
Company, May 2003.

[3] Wendy Roll. Weapon Systems OEP Configuration Interface, Version
2.4. The Boeing Company, May 2003.

22

239

	cover page .pdf
	AFRL-VA-WP-TR-2005-_____

	OGIFinalreport.pdf
	TimberFinalAppendices.pdf
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E
	APPENDIX F
	APPENDIX G
	APPENDIX H
	APPENDIX I
	APPENDIX J
	APPENDIX K
	APPENDIX L
	APPENDIX M
	Timber-2002-04.pdf
	1. Haskell
	Functions
	Laziness
	Function definitions
	Type inference
	Partial application
	Pattern-matching
	Algebraic datatypes
	Predefined types
	Higher-order functions
	Layout

	2. Records
	3. Subtyping
	Polymorphic subtype rules
	Depth subtyping
	Restrictions on subtyping

	4. Automatic type inference
	5. Reactive objects
	Objects and methods
	Procedures and commands
	Assignable local state
	A word about overloading
	The O monad
	Object Identity
	Expressions vs. commands
	Subtyping in the O monad
	The main template
	Concurrency
	Reactivity

	6. Time
	Specifying Time
	Timelines for Actions
	Specifying the Timeline
	Execution Model
	Scheduling
	Example of Reduction Semantics

	7. Additional Features
	Extended do-syntax
	Array updates
	Record stuffing

	8. An Autonomous Vehicle Controller
	Appendix:� A Context-Free Grammar for Timber
	Module Header
	Top-level declarations
	Datatype declarations
	Bindings
	Qualified types
	Types
	Expressions
	List expressions
	Case alternatives
	Statement sequences
	Patterns
	Variables, Constructors and Operators
	Terminal symbols

	oepdsl.pdf
	A Domain Specific Language for Component Configuration
	
	Introduction
	Component Configuration in Build 1.6.1 of the Boeing OEP
	Towards a Domain Specific Language for The Boeing OEP
	Describing Scenario 1.1 using a DSL for Component Configuration
	Modularity, Reuse, and Abstraction in the OEP DSL
	Other Features of the OEP DSL
	Describing Scenario 1.4 using the OEP DSL
	Conclusions

